Mitsuteru Inoue

Learn More
We study surface Tamm states in magnetophotonic structures magnetized in the Cotton–Mouton ͑Voigt͒ geometry. We demonstrate that the periodicity violation due to the structure truncation together with the violation of the time reversal symmetry due to the presence of magneto-optical materials gives rise to nonreciprocality of the surface modes. Dispersion(More)
It is shown theoretically that the Faraday rotation becomes anomalously large and exhibits extraordinary behavior near the frequencies of the extraordinary optical transmittance through optically thick perforated metal film with holes filled with a magneto-optically active material. This phenomenon is explained as result of strong confinement of the(More)
The Springer Series in Materials Science covers the complete spectrum of materials physics, including fundamental principles, physical properties, materials theory and design. Recognizing the increasing importance of materials science in future device technologies, the book titles in this series reflect the state-of-the-art in understanding and controlling(More)
High-power giant pulses can be used applied in various applications with Q-switched micro-lasers. This method can shorten the pulse duration; however, active control is currently impossible in micro-lasers. To achieve precise pulse control while maintaining compactness and simplicity, we exploit the magneto-optical effect in magnetic garnet films with(More)
Vacuum annealed polycrystalline cerium substituted yttrium iron garnet (CeYIG) films deposited by radio frequency magnetron sputtering on non-garnet substrates were used in nonreciprocal racetrack resonators. CeYIG annealed at 800°C for 30 min provided a large Faraday rotation angle, close to the single crystal value. Crystallinity, magnetic properties,(More)
We report on microcavities comprising para-magnetic garnet and electro-optic films (MPMEO) for modulation of the polarization rotation angle of light at near-UV wavelengths with a slight intensity change, with applying a low voltage. The MPMEO are composed of para-magnetic garnet and electro-optic films sandwiched between two Bragg mirrors. The microcavity(More)
Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers(More)
A 10-mm cavity length magnetooptically Q-switched Nd:GdVO4 laser was demonstrated using a single-crystalline ferrimagnetic rare-earth iron garnet film. To design the Q-switching system, the magnetic, optical, and magnetooptical properties of the garnet film were measured. The diode pumped solid-state laser cavity was constructed using a 190-μm-thick garnet(More)
Holographic memory is expected to become a high-capacity data storage. Magnetic volumetric holograms are rewritable holograms that are recorded as magnetization directions through thermomagnetic recording. However, the effective depth of magnetic holograms is limited by thermal diffusion that causes merging of magnetic fringes. In this study, we propose the(More)