Mitsuru Tanaka

Toshiro Matsui4
Toshihiko Fukuda3
Takahiro Kuroda2
4Toshiro Matsui
3Toshihiko Fukuda
2Takahiro Kuroda
Learn More
Fine particles derived from diesel engines, diesel exhaust particles (DEP), have been shown to augment gene expression of several inflammatory cytokines in human airway epithelial cells in vitro. However, it remains unclear whether or not DEP have any effect on the expression and production of eotaxin, an important chemokine involved in eosinophil(More)
Trp-His is the only vasoactive di-peptide known to regulate intracellular Ca(2+) ([Ca(2+)]i) and prevent the onset of atherosclerosis in mice. In this study, we showed that Trp-His reduced the [Ca(2+)]i elevation in phospholipase C-activated vascular smooth muscle cells (VSMCs), while a mixture of the corresponding constituent amino acids did not show(More)
Proliferation of bronchial epithelial cells is an important biologic process in a variety of physiologic and pathologic conditions. In this study, we demonstrate that hepatocyte growth factor (HGF) stimulates proliferation of human bronchial epithelial cells obtained from healthy volunteers. The mitogenic effect of HGF is dependent on costimulation with(More)
Our previous study demonstrated that adenine (6-amino-6H-purine) relaxed contracted rat aorta rings in an endothelial-independent manner. Although adenine receptors (AdeRs) are expressed in diverse tissues, aortic AdeR expression has not been ascertained. Thus, the aims of this study were to clarify the expression of AdeR in rat vascular smooth muscle cells(More)
Catecholamine synthesis and transmission in the brain are influenced by the availability of Tyr in the body. In this study, we compared the effects of oral administration of Tyr-containing dipeptides Ile-Tyr, Ser-Tyr, and Tyr-Pro with Tyr alone on catecholamine metabolism in the mouse brainstem. Among these dipeptides, Ile-Tyr administration led to(More)
Aging deteriorates vascular functions such as vascular reactivity and stiffness. Thus far, various reports suggest that bioactive compounds can improve vascular functions. However, few age-related studies of natural bioactive compounds are available. The present study attempted to evaluate age-related vasorelaxation of bioactive cinnamic acids, caffeic(More)