Mitsuru Ishikawa

Learn More
Bioconjugated nanomaterials offer endless opportunities to advance both nanobiotechnology and biomedical technology. In this regard, semiconductor nanoparticles, also called quantum dots, are of particular interest for multimodal, multifunctional and multiplexed imaging of biomolecules, cells, tissues and animals. The unique optical properties, such as(More)
Housekeeping genes are often used as internal standards for gene expression analysis. When steady-state transcript levels of 4 typically used housekeeping genes, i.e., beta-actin, glyceraldehyde 3-phosphate dehydrogenase, cyclophilin, and acidic ribosomal phosphoprotein P0 (36B4), were evaluated in various rat tissues, the 36B4 gene seemed to be the most(More)
We review the syntheses, optical properties, and biological applications of cadmium selenide (CdSe) and cadmium selenide-zinc sulfide (CdSe-ZnS) quantum dots (QDs) and gold (Au) and silver (Ag) nanoparticles (NPs). Specifically, we selected the syntheses of QDs and Au and Ag NPs in aqueous and organic phases, size- and shape-dependent photoluminescence (PL)(More)
The dynamic changes in dendritic morphology displayed by developing and mature neurons have stimulated interest in deciphering the signaling pathways involved. Recent studies have identified megakaryocytic acute leukemia (MAL), a serum response factor (SRF) co-activator, as a key component of a signaling pathway linking changes in the actin cytoskeleton to(More)
We identified an insect neuropeptide, namely, allatostatin 1 from Drosophila melanogaster, that transfects living NIH 3T3 and A431 human epidermoid carcinoma cells and transports quantum dots (QDs) inside the cytoplasm and even the nucleus of the cells. QD-conjugated biomolecules are valuable resources for visualizing the structures and functions of(More)
Recent studies indicate that controlling the nuclear decondensation and intra-nuclear localization of plasmid DNA (pDNA) would result in an increased transfection efficiency. In the present study, we established a technology for imaging the nuclear condensation/decondensation status of pDNA in nuclear subdomains using fluorescence resonance energy transfer(More)
Dynamic changes in neuronal morphology and transcriptional regulation play crucial roles in the neuronal network and function. Accumulating evidence suggests that the megakaryoblastic leukemia (MKL) family members, which function not only as actin-binding proteins but also as serum response factor (SRF) transcriptional coactivators, regulate neuronal(More)
The purpose of the present study was to investigate the effects of phenothiazines (at clinically relevant doses) on the viability and proliferation of leukemic cell lines and normal lymphocytes, and to investigate the possibility of specific induction of apoptosis in leukemic cells. Phenothiazines with different chemical structure and hydrophobicity were(More)
Development of quantum dot (QD) based device components requires controlled integration of QDs into different photonic and electronic materials. In this regard, introduction of methods for regular arrangement of QDs and investigation of properties of QD-based assemblies are important. In the current work we report (1) controlled conjugation of CdSe-ZnS QDs(More)
We report on plasmon resonance Rayleigh scattering (PRRS) and surface enhanced Raman scattering (SERS) imaging for inhibition assay of yeast cell walls. This assay reveals that the proteins having alkali sensitive linkage bound to β1,3 glucan frameworks in cell walls are involved in SERS activity. The result is further confirmed by comparison of genetically(More)