Mitsuru Higa

Learn More
Balance in signal transducer and activator of transcription (STAT) activation is a key factor in regulating the fate of naive CD4(+)T cells. Here, we demonstrate that AT-rich interactive domain-containing protein 5a (Arid5a) in T cells directs naive CD4(+)T cells to differentiate into inflammatory CD4(+)T cells, especially Th17 cells, through selective(More)
UV-sensitive syndrome is an autosomal recessive disorder characterized by hypersensitivity to UV light and deficiency in transcription-coupled nucleotide excision repair (TC-NER), a subpathway of nucleotide excision repair that rapidly removes transcription-blocking DNA damage. UV-sensitive syndrome consists of three genetic complementation groups caused by(More)
We have designed a novel temperature-responsive dialysis system consisting of mixed electrolyte solutions and an ionic gel whose charge density changes in response to temperature changes. The system can modulate the time-concentration profile of just bivalent ions in arbitrary forms by changing the transport modes of the ions in response to the temperature,(More)
The AT-rich interactive domain-containing protein 5a (Arid5a) plays a critical role in autoimmunity by regulating the half-life of Interleukin-6 (IL-6) mRNA. However, the signaling pathways underlying Arid5a-mediated regulation of IL-6 mRNA stability are largely uncharacterized. Here, we found that during the early phase of lipopolysaccharide (LPS)(More)
Adenine-thymine (AT)-rich interactive domain containing protein 5a (Arid5a) is an RNA-binding protein that has been shown to play an important immune regulatory function via the stabilization of IL-6 and STAT3 mRNA. However, the role of Arid5a in the overwhelming and uncontrolled immune response that leads to septic shock is unknown. Here, we report that(More)
We propose a novel model dialysis system that can valence-selectively control the transport modes of ions in response to temperature change. In a dialysis system consisting of an anionic gel membrane and mixed solutions containing a driving electrolyte and electrolytes with uni-, bi-, and trivalent cations, the dependence of the charge density of the gel(More)
Polymer electrolyte membranes (PEMs) for direct methanol fuel cell (DMFC) applications were prepared from a graft-copolymer (PSF-g-PSSA) consisting of a polysulfone (PSF) main chain and poly(styrene sulfonic acid) (PSSA) side chains with various average distances between side chains (Lav) and side chain lengths (Lsc). The polymers were synthesized by(More)
A colloidal powder was prepared by fixing polyaniline (PANI, conducting polymer), poly(vinyl alcohol) (PVA, surfactant stabilizer) and a suitable dopant anion to silica-gel powder. This hydrophilic composite colloidal particle incorporates anions with the protonation of PANI in an acidic solution. The anion can be exchanged with other anions when the(More)
Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde(More)
In order to change the ion-exchange selectivity of anion-exchange resin, the surface of a gel-type anion exchange resin was modified with anionic polyelectrolyte, polystyrenesulfonic acid. Using this modified resin, the ion-exchange rate of nitrate was little decreased, but that of sulfate was evidently decreased. It is considered that the ion-exchange(More)