Learn More
A spectral atmospheric general circulation model called AFES (AGCM for Earth Simulator) was developed and optimized for the architecture of the Earth Simulator (ES). The ES is a massively parallel vector supercomputer that consists of 640 processor nodes interconnected by a single stage crossbar network with its total peak performance of 40.96 Tflops. The(More)
We succeeded in getting 14.9 TFLOPS performance when running a plasma simulation code IMPACT-3D parallelized with High Performance Fortran on 512 nodes of the Earth Simulator. The theoretical peak performance of the 512 nodes is 32 TFLOPS, which means 45% of the peak performance was obtained with HPF. IMPACT-3D is an implosion analysis code using TVD(More)
The high-resolution direct numerical simulations (DNSs) of incompressible turbulence with numbers of grid points up to 4096<sup>3</sup> have been executed on the Earth Simulator (ES). The DNSs are based on the Fourier spectral method, so that the equation for mass conservation is accurately solved. In DNS based on the spectral method, most of the(More)
The K computer is a distributed memory super-computer system consisting of more than 800 compute nodes which is being developed by RIKEN as a Japanese national project. Its performance is aimed at achieving 10 peta-flops sustained in the LINPACK benchmark. The system is under installation and adjustment. The whole system will be operational in 2012.
Advanced Institute for Computational Science (AICS) was created in July 2010 at RIKEN under the supervision of Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) in order to establish the national center of excellence (COE) for high-performance computing and to operate the 10 petaflops class supercomputer called "K",(More)
Real space DFT (RSDFT) is a simulation technique most suitable for massively-parallel architectures to perform first-principles electronic-structure calculations based on density functional theory. We here report unprecedented simulations on the electron states of silicon nanowires with up to 107,292 atoms carried out during the initial performance(More)
This paper proposes the design of ultra scalable MPI collective communication for the K computer, which consists of 82,944 computing nodes and is the world’s first system over 10 PFLOPS. The nodes are connected by a Tofu interconnect that introduces six dimensional mesh/torus topology. Existing MPI libraries, however, perform poorly on such a direct network(More)