Mitsuo Tachibana

Learn More
The covalent modification of histone tails has regulatory roles in various nuclear processes, such as control of transcription and mitotic chromosome condensation. Among the different groups of enzymes known to catalyze the covalent modification, the most recent additions are the histone methyltransferases (HMTases), whose functions are now being(More)
Properties of glutamatergic synaptic transmission were investigated by simultaneously voltage-clamping a pair of connected bipolar cells and cells in the ganglion cell layer (GLCs) in the newt retinal slice preparation. Activation of the Ca2+ current in a single bipolar cell was essential for evoking the glutamatergic postsynaptic current in the GLC.(More)
The release of neurotransmitter is evoked by activation of the Ca current (ICa) at presynaptic terminals. Though multiple types of ICa have been reported in various cells, little is known about the properties of presynaptic ICa in the vertebrate CNS. The aim of this article is to identify the type of ICa involved in the release of neurotransmitter from(More)
MITF (microphthalmia-associated transcription factor) encodes a transcription factor with a basic-helix-loop-helix-zipper (bHLH-Zip) motif. MITF mutations occur in patients with Waardenburg syndrome type 2, a disorder associated with melanocyte abnormalities. Here we show that ectopic expression of MITF converts NIH/3T3 fibroblasts into cells with(More)
Bipolar, amacrine, and ganglion cells of carp retina, stained intracellularly with Procion yellow, can be divided into types a and b, according to the destination of terminals and dendritic trees in the inner plexiform layer (sublamina a and b, respectively). Type a cells showed hyperpolarizing, or off, responses and type b cells depolarizing, or on,(More)
Waardenburg syndrome (WS) is a hereditary disorder that causes hypopigmentation and hearing impairment. Depending on additional symptoms, WS is classified into four types: WS1, WS2, WS3 and WS4. Mutations in MITF (microphthalmia-associated transcription factor) and PAX3, encoding transcription factors, are responsible for WS2 and WS1/WS3, respectively. We(More)
Solitary horizontal cells, dissociated from papain-treated goldfish retinas, produce action potentials and show a non-linear current-voltage relationship. Underlying ion-conductance mechanisms were analysed by a single-micro-electrode voltage-clamp technique. Pharmacological and ion-substitution experiments revealed that ionic currents could be separated(More)
1. Solitary horizontal cells were obtained by dissociating the adult goldfish retina using the enzyme papain. The cells were identified on morphological grounds and could be kept in culture for over a week. 2. Solitary horizontal cells, penetrated with micro-electrodes, had resting potentials of about -75 mV in normal solution. When external K+(More)
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptors are probably the most widespread excitatory neurotransmitter receptors of the central nervous system, and they play a role in most normal and pathological neural activities. However, previous detailed studies of AMPA subunit distribution have been limited mainly to the(More)
1. Müller cells were isolated from salamander retinas and their membrane voltage was controlled with a whole-cell voltage clamp. External D-aspartate, L-aspartate and L-glutamate each induced a membrane current. D-Glutamate, kainate, quisqualate and N-methyl-D-aspartate were more than 100x less effective than L-aspartate. Kynurenic acid had no effect on the(More)