Mitsunori Kirihata

Learn More
R- and S-epimerization at the 3(1) position of bacteriochlorophyll (BChl) c and the formation of rod-like aggregates in chlorosomes of green sulfur bacteria were markedly affected in Chlorobium (Cb.) tepidum and Cb. limicola by cultivation under various light intensities (photon fluence rate). The stronger the light, the higher the ratio of the S-epimer to(More)
We have applied boron neutron capture therapy (BNCT) to malignant brain tumors. Here we evaluated the survival benefit of BNCT for recurrent malignant glioma (MG). Since 2002, we have treated 22 cases of recurrent MG with BNCT. Survival time was analyzed with special reference to recursive partitioning analysis (RPA) classification, by Carson et al. (J Clin(More)
Recurrent head and neck malignancies (HNM) are often radio-/chemo-resistant and show extensive growth, necessitating a wide resection including surrounding tissues. To avoid severe impairment of oro-facial structures and functions, it is necessary to explore new treatments for HNM. Boron neutron capture therapy (BNCT) is tumor-cell targeted radiotherapy(More)
OBJECT To improve the effectiveness of boron neutron capture therapy (BNCT) for malignant gliomas, the authors used epithermal rather than thermal neutrons for deep penetration and two boron compounds-sodium borocaptate (BSH) and boronophenylalanine (BPA)-with different accumulation mechanisms to increase the boron level in tumors while compensating for(More)
OBJECTIVE Since 2002-2007, we applied boron neutron capture therapy (BNCT) to >50 cases of malignant gliomas (MGs) with epithermal neutron irradiations. Recently, we showed the early radiographical improvement of malignant glioma patients by our modified BNCT, with simultaneous use of BPA (borono-phenylalanine) and BSH (sodium borocaptate). In this time, we(More)
We very effectively treated two patients with recurrent glioblastoma with modified boron neutron capture therapy (BNCT). In this paper, we describe the effectiveness of this treatment, and discuss the ways in which we modified the treatment. A 61-year-old man had a first operation for a right temporal glioblastoma, followed by full-dose chemo-radiotherapy.(More)
Here we demonstrate that differentiation between glioblastoma (GB) tumor progression (TP) and radiation necrosis (RN) can be achieved with fluoride-labeled boronoalanine positron emission tomography (F-BPA-PET). F-BPA-PET images were obtained from histologically verified 38 GB, 8 complete RN, and 5 RN cases with partial residual tumors. The lesion/normal(More)
In order to improve the effectiveness of boron neutron capture therapy (BNCT) for malignant gliomas, we examined the optimization of the administration of boron compounds in brain tumor animal model. We analyzed the concentration of boron atoms in intracranial C6 glioma -bearing rats using inductively coupled plasma atomic emission spectrometry. Each(More)
Nanoparticles are effective of delivering cargo into cells. Here, sodium borocaptate (BSH) was encapsulated in liposomes composed of nickel lipid, and anti-epidermal growth factor receptor (EGFR) antibodies were conjugated to the liposomes using the antibody affinity motif of protein A (ZZ) as an adaptor (immunoliposomes). The immunoliposomes were used to(More)
It is necessary to explore new treatments for recurrent head and neck malignancies (HNM) to avoid severe impairment of oro-facial structures and functions. Boron neutron capture therapy (BNCT) is tumor-cell targeted radiotherapy that has significant superiority over conventional radiotherapies in principle. We have treated with BNCT 42 times for 26 patients(More)