Mitsunari Abe

Learn More
In humans, training in which good performance is rewarded or bad performance punished results in transient behavioral improvements. The relative effects of reward and punishment on consolidation and long-term retention, critical behavioral stages for successful learning, are not known. Here, we investigated the effects of reward and punishment on these(More)
OBJECTIVE To investigate whether motor suppression is an active process, and to clarify its somatotopic organization, we investigated cortico-motoneuronal excitability using transcranial magnetic stimulation (TMS) during the Stop-signal task. METHODS Subjects were asked to press a button following a Go cue; a Stop-signal followed the Go cue by a certain(More)
This review article discusses mechanisms of how distinct behavioral operations are organized by different modules distributed in the frontal cortex. Cognitive manipulation often requires a flow of multiple elementary sub-operations processed in specialized brain regions. The dorsolateral prefrontal cortex (dlPFC) is likely responsible for attentional(More)
We examined the stimulus-response profile during single-pulse transcranial magnetic stimulation (TMS) by measuring motor-evoked potentials (MEPs) with electromyographic monitoring and hemodynamic responses with functional magnetic resonance imaging (fMRI) at 3 Tesla. In 16 healthy subjects, single TMS pulses were irregularly delivered to the left primary(More)
Convergent findings point to a left-sided specialization for the representation of learned actions in right-handed humans, but it is unknown whether analogous hemispheric specialization exists for motor skill learning. In the present study, we explored this question by comparing the effects of anodal transcranial direct current stimulation (tDCS) over(More)
Evidence indicates the involvement of the rostral part of the dorsal premotor cortex (pre-PMd) in executive processes during working memory tasks. However, it remains unclear what the executive function of pre-PMd is in relation to that of the dorsolateral prefrontal cortex (DLPFC) and how these two areas interact. Using functional magnetic resonance(More)
Studies using force-matching tasks have suggested that when we feel a "sense of effort," cortical regions may act to increase motor commands, and thus recruit additional motor units, in order to compensate for the exerted force. We hypothesized that suppressing activity in the primary motor cortex (M1), which is the source of the motor commands, would(More)
27 Convergent findings point to a left-sided specialization for the representation of learned actions in right28 handed humans, but it is unknown whether analogous hemispheric specialization exists for motor skill 29 learning. Here, we explored this question by comparing the effects of anodal transcranial direct current 30 stimulation (tDCS) over either(More)
BACKGROUND Responses to plasticity-inducing brain stimulation protocols are highly variable. However, no data are available concerning the variability of responses to quadripulse stimulation (QPS). OBJECTIVE We assessed the QPS parameters of motor cortical plasticity induction in a systematic manner, and later investigated the variability of QPS using(More)
People always concern about what they have and what they might lose even it is just imaginary property. According to Prospect Theory, the losses might be weighted by subjects higher than gain, which would cause the disparity between the willingness to accept (WTA) and willingness to pay (WTP) compensation in economic valuation. Using functional MRI, we(More)