Mitsuhiro Horade

  • Citations Per Year
Learn More
An on-chip deformability checker is proposed to improve the velocity–deformation correlation for red blood cell (RBC) evaluation. RBC deformability has been found related to human diseases, and can be evaluated based on RBC velocity through a microfluidic constriction as in conventional approaches. The correlation between transit velocity and amount of(More)
In the fields of medicine and biology, it is essential to realize fine manipulation. Therefore, micromanipulation techniques and micromanipulators such as microgrippers and optical tweezers have been developed. We have developed a two-fingered microhand which is using the parallel mechanism to realize precise and stable micromanipulation. However, the(More)
In this paper, a dynamic releasing approach is proposed for high-speed biological cell manipulation. A compact parallel mechanism for grasping and releasing microobjects is used to generate controllable vibration to overcome the strong adhesion forces between the end effector and the manipulated object. To reach the required acceleration of the end(More)
A high-resolution cell manipulation system is presented for investigating red blood cell deformation under long-standing load in this paper. Because the low Reynolds number in microfluidic system, cell position can be manipulated by controlling the flow in a microchannel. A high-speed vision system is embedded in the system for providing cell present(More)
This paper presents an active release method of microobject for the improvement of the position accuracy after releasing by using 3D high speed motions of an end effector. In the micro manipulation, the release task is the challenge work due to adhesion forces. To overcome the adhesion force and to place microobject accurately on the desired location, in(More)
The reliable manipulation of micro-objects has been a still difficult work in scientific and technical field due to scale effects. This paper presents two types of release methods, using local stream and inertia force generated by 3D high speed motion of an end effector, for releasing and accurate positioning of biological cells. Two-fingered microhand(More)