Learn More
Tight junctions are one mode of cell-cell adhesion in epithelial and endothelial cellular sheets. They act as a primary barrier to the diffusion of solutes through the intercellular space, create a boundary between the apical and the basolateral plasma membrane domains, and recruit various cytoskeletal as well as signalling molecules at their cytoplasmic(More)
Two related integral membrane proteins, claudin-1 and -2, recently were identified as novel components of tight junction (TJ) strands. Here, we report six more claudin-like proteins, indicating the existence of a claudin gene family. Three of these were reported previously as RVP1, Clostridium perfringens enterotoxin receptor, and TMVCF, but their(More)
Recently, we found that ZO-1, a tight junction-associated protein, was concentrated in the so called isolated adherens junction fraction from the liver (Itoh, M., A. Nagafuchi, S. Yonemura, T. Kitani-Yasuda, Sa. Tsukita, and Sh. Tsukita. 1993. J. Cell Biol. 121:491-502). Using this fraction derived from chick liver as an antigen, we obtained three(More)
Tight junctions (TJs) in endothelial cells are thought to determine vascular permeability. Recently, claudin-1 to -15 were identified as major components of TJ strands. Among these, claudin-5 (also called transmembrane protein deleted in velo-cardio-facial syndrome [TMVCF]) was expressed ubiquitously, even in organs lacking epithelial tissues, suggesting(More)
Occludin is an integral membrane protein localizing at tight junctions (TJ) with four transmembrane domains and a long COOH-terminal cytoplasmic domain (domain E) consisting of 255 amino acids. Immunofluorescence and laser scan microscopy revealed that chick full-length occludin introduced into human and bovine epithelial cells was correctly delivered to(More)
Occludin is an integral membrane protein with four transmembrane domains that is exclusively localized at tight junction (TJ) strands. Here, we describe the generation and analysis of mice carrying a null mutation in the occludin gene. Occludin -/- mice were born with no gross phenotype in the expected Mendelian ratios, but they showed significant postnatal(More)
Occludin's role in mammalian tight junction activity was examined by 'labeling' the occludin pool with immunologically detectable chick occludin. This was accomplished by first transfecting MDCK cell with the Lac repressor gene. HygR clones were then transfected with chick occludin cDNA inserted into a Lac operator construct. The resulting HygR/NeoR clones(More)
Claudins, comprising a multigene family, constitute tight junction (TJ) strands. Clostridium perfringens enterotoxin (CPE), a single approximately 35-kD polypeptide, was reported to specifically bind to claudin-3/RVP1 and claudin-4/CPE-R at its COOH-terminal half. We examined the effects of the COOH-terminal half fragment of CPE (C-CPE) on TJs in L(More)
Claudins (claudin-1 to -18) with four transmembrane domains and two extracellular loops constitute tight junction strands. The peptide toxin Clostridium perfringens enterotoxin (CPE) has been shown to bind to claudin-3 and -4, but not to claudin-1 or -2. We constructed claudin-1/claudin-3 chimeric molecules and found that the second extracellular loop of(More)
Occludin has been identified from chick liver as a novel integral membrane protein localizing at tight junctions, and the cDNA encoding its mammalian homologue was identified very recently (Ando-Akatsuka, Y., M. Saitou, T. Hirase, M. Kishi, A. Sakakibara, M. Itoh, S. Yonemura, M. Furuse, Sh. Tsukita, J. Cell Biol. 133, 43-47 (1996)). Here we describe the(More)