Learn More
OBJECTIVE Obesity in rodents and humans is mostly associated with elevated plasma leptin concentrations, suggesting a new pathological concept of 'leptin resistance'. We have demonstrated that brain-derived neurotrophic factor (BDNF) can improve obesity and diabetes of C57BL/KsJ db/db (db/db) mice. In this study, we investigated whether or not BDNF is(More)
We have previously demonstrated that brain-derived neurotrophic factor (BDNF) ameliorates glucose metabolism and energy expenditure in obese diabetic db/db mice. In the present study, the effect of BDNF treatment on pancreatic islets of db/db mice was examined, using vehicle-treated pair-fed db/db mice as controls. Brain-derived neurotrophic factor (10(More)
Alzheimer's disease (AD) is characterized by the extracellular deposition of amyloid-β (Aβ), neurofibrillary tangle formation, and a microglial-driven inflammatory response. Chronic inflammatory activation compromises microglial clearance functions. Because peroxisome proliferator-activated receptor γ (PPARγ) agonists suppress inflammatory gene expression,(More)
Neurotrophins are important regulators in the embryogenesis, development and functioning of nervous systems. In addition to the efficacy of brain-derived neurotrophic factor (BDNF) in neurological disorders, we have found that BDNF demonstrates endocrinological functions and reduces food intake and blood glucose concentration in rodent obese diabetic(More)
We previously demonstrated that repetitive administration of brain-derived neurotrophic factor (BDNF) ameliorates glucose metabolism and energy expenditure in obese diabetic db/db mice. However, we have not evaluated in detail the effect of single or intermittent BDNF administration on glucose metabolism in a diabetic animal model. The objectives of this(More)
AIMS Brain-derived neurotrophic factor (BDNF) ameliorates glucose metabolism in obese diabetic db/db mice. The antidiabetic effect of BDNF is dependent on plasma insulin levels, and BDNF enhances insulin action by modulating insulin signalling in peripheral tissues. The aim of the study was to compare the antidiabetic effects of BDNF with those of(More)
AIM It has been reported previously that brain-derived neurotrophic factor (BDNF) regulates blood glucose metabolism in rodent obese diabetic models such as C57BL/KsJ-leprdb/leprdb (db/db) mice. BDNF further regulates energy expenditure, possibly through the central and autonomous nervous systems. In this study, we evaluated the effect of BDNF on both lipid(More)
AIMS Repetitive subcutaneous or intracerebroventricular administration of brain-derived neurotrophic factor (BDNF) ameliorates glucose metabolism and enhances energy expenditure in obese diabetic C57BL/KsJ-db/db mice. To explore the mechanism of action through which BDNF regulates glucose metabolism, we examined the effects of BDNF on glucose utilization(More)
We previously reported that peripheral injection of brain-derived neurotrophic factor (BDNF) exhibits hypophagic and hypoglycemic effects in obese hyperglycemic animals, indicating its antiobesity and antidiabetic effects. Since previous studies were focused on the effect of BDNF on overt diabetic animals with severe hyperglycemia, there was no evidence(More)
AIMS/INTRODUCTION Peroxisome proliferator-activated receptors (PPARs) play a key regulating role in homeostasis. In this study, we investigated the effects of DSP-8658, a novel selective PPARa/γ modulator, on adipogenesis and glucose metabolism in diabetic obese mice and compared these effects to those of pioglitazone, a PPARγ full agonist. MATERIALS AND(More)