Learn More
When plants are exposed to light levels higher than those required for photosynthesis, reactive oxygen species are generated in the chloroplasts and cause photodamage. This can occur even under natural growth conditions. To mitigate photodamage, plants have developed several protective mechanisms. One is chloroplast avoidance movement, in which chloroplasts(More)
Four enzymes, namely, the maize C(4)-specific phosphoenolpyruvate carboxylase (PEPC), the maize C(4)-specific pyruvate, orthophosphate dikinase (PPDK), the sorghum NADP-malate dehydrogenase (MDH), and the rice C(3)-specific NADP-malic enzyme (ME), were overproduced in the mesophyll cells of rice plants independently or in combination. Overproduction(More)
The majority of terrestrial plants, including many important crops such as rice, wheat, soybean, and potato, are classified as C(3) plants that assimilate atmospheric CO(2) directly through the C(3) photosynthetic pathway. C(4) plants, such as maize and sugarcane, evolved from C(3) plants, acquiring the C(4) photosynthetic pathway in addition to the C(3)(More)
Elevated CO2 concentrations (eCO2) trigger various plant responses. Despite intensive studies of these responses, the underlying mechanisms remain obscure. In this work, we investigated when and how leaf physiology and anatomy are affected by eCO2 in rice plants. We analyzed the most recently fully expanded leaves that developed successively after transfer(More)
  • 1