Mitre Costa Dourado

Learn More
A set of vertices D of a graph G is geodetic if every vertex of G lies on a shortest path between two not necessarily distinct vertices in D. The geodetic number of G is the minimum cardinality of a geodetic set of G. We prove that it is NP complete to decide for a given chordal or chordal bipartite graph G and a given integer k whether G has a geodetic set(More)
Consider a set of n unit time jobs, each one having a release date, a due date, both nonnegative integers, and a weight, a positive real number. Given a set of m parallel machines, we describe an algorithm for finding schedules with minimum weighted number of tardy jobs. The complexity of the proposed algorithm is O(n2 (1+logm) m ). The best previous(More)
Let G be a finite simple graph. Let S ⊆ V (G), its closed interval I[S] is the set of all vertices lying on a shortest path between any pair of vertices of S. The set S is convex if I[S] = S. In this work we define the concept of convex partition of graphs. If there exists a partition of V (G) into p convex sets we say that G is p-convex. We prove that is(More)