Mitra Shojania Feizabadi

Learn More
While there have been many single-molecule studies of kinesin-1, most have been done along microtubules purified from bovine or porcine brain, and relatively little is known about how variations in tubulin might alter motor function. Of particular interest is transport along microtubules polymerized from tubulin purified from MCF7 breast cancer cells, both(More)
The dynamic and mechanical properties of mammalian neural microtubules have been widely studied; however, similar knowledge about these properties is limited for non-neural microtubules, which, unlike neural microtubules, consist of different β-tubulin isotypes. In this study, we report, for the first time, an estimated value for the persistence length of a(More)
BACKGROUND In this paper we consider two approaches to examining the complex dynamics of conjoint aging-cancer cellular systems undergoing chemotherapeutic intervention. In particular, we focus on the effect of cells growing conjointly in a culture plate as a precursor to considering the larger multi-dimensional models of such systems. Tumor cell growth is(More)
In this paper, we develop a theoretical contribution towards the understanding of the complex behavior of conjoint tumor-normal cell growth under the influence of immuno-chemotherapeutic agents under simple immune system response. In particular, we consider a core model for the interaction of tumor cells with the surrounding normal cells. We then add the(More)
In this paper, we modify our previously developed conjoint tumor-normal cell model in order to make a distinction between tumor cells that are responsive to chemotherapy and those that may show resistance. Using this newly developed core model, the evolution of three cell types: normal, tumor, and drug-resistant tumor cells, is studied through a series of(More)
There is known to be significant diversity of β-tubulin isoforms in cells. However, whether the functions of microtubules that are polymerized from different distributions of beta isotypes become distinct from one another are still being explored. Of particular interest, recent studies have identified the role that different beta tubulin isotypes carry in(More)
Drug-induced resistance is one the major obstacles that may lead to therapeutic failure during cancer treatment. Different genetic alterations occur when tumor cells divide. Among new generations of tumor cells, some may express intrinsic resistance to a specific chemotherapeutic agent. Also, some tumor cells may carry a gene that can develop resistance(More)
The kinesin 5 motor contributes critically to mitosis, and is often upregulated in cancer. In vitro motility studies of kinesin 5 moving along bovine brain microtubules indicate that the motors have limited processivity. Cancer cells have abnormal mitotic behavior, so one might wonder whether the functional properties of kinesin 5 change in such a(More)