Mitesh R. Meswani

Learn More
Die-stacked DRAM is a technology that will soon be integrated in high-performance systems. Recent studies have focused on hardware caching techniques to make use of the stacked memory, but these approaches require complex changes to the processor and also cannot leverage the stacked memory to increase the system's overall memory capacity. In this work, we(More)
The emergence of die-stacking technology with mixed logic and memory processes has brought about a renaissance in “processing in memory” (PIM) concepts, first envisioned decades ago. For some, the PIM concept conjures an image of a complete processing unit (e.g., CPU, GPU) integrated directly with memory, perhaps on a logic chip 3D-stacked under one or more(More)
As computation becomes increasingly limited by data movement and energy consumption, exploiting locality throughout the memory hierarchy becomes critical for maintaining the performance scaling that many have come to expect from the computing industry. Moving computation closer to main memory presents an opportunity to reduce the overheads associated with(More)
Computers with hardware accelerators, also referred to as hybrid-core systems, speedup applications by offloading certain compute operations that can run faster on accelerators. Thus, it is not surprising that many of top500 supercomputers use accelerators. However, in addition to procurement cost, significant programming and porting effort is required to(More)
The speed of the memory subsystem often constrains the performance of large-scale parallel applications. Experts tune such applications to use hierarchical memory subsystems efficiently. Hardware accelerators, such as GPUs, can potentially improve memory performance beyond the capabilities of traditional hierarchical systems. However, the addition of such(More)
Accelerating breadth-first search (BFS) can be a compelling value-add given its pervasive deployment. The current state-of-the-art hybrid BFS algorithm selects different traversal directions based on graph properties, thereby, possessing heterogeneous characteristics. Related work has studied this heterogeneous BFS algorithm on homogeneous processors. In(More)
The challenges to push computing to exaflop levels are difficult given desired targets for memory capacity, memory bandwidth, power efficiency, reliability, and cost. This paper presents a vision for an architecture that can be used to construct exascale systems. We describe a conceptual Exascale Node Architecture (ENA), which is the computational building(More)
Over the life of a modern computer, the energy cost of running the system can exceed the cost of the original hardware purchase. This has driven the community to attempt to understand and minimize energy costs wherever possible. Towards these ends, we present an automated, fine-grained approach to selecting per-loop processor clock frequencies. The clock(More)
Future exascale systems will require very aggressive memory systems simultaneously delivering huge storage capacities and multi-TB/s bandwidths. To achieve the bandwidth targets, in-package, die-stacked memory technologies will likely be necessary. However, these integrated memories do not provide enough capacity to achieve the overall per-node memory size(More)