Learn More
On 4 July 2005, many observatories around the world and in space observed the collision of Deep Impact with comet 9P/Tempel 1 or its aftermath. This was an unprecedented coordinated observational campaign. These data show that (i) there was new material after impact that was compositionally different from that seen before impact; (ii) the ratio of dust mass(More)
To achieve its full diffraction limit in the infrared, the primary mirror of the Keck telescope (now telescopes) must be properly phased: The steps or piston errors between the individual mirror segments must be reduced to less than 100 nm. We accomplish this with a wave optics variation of the Shack-Hartmann test, in which the signal is not the centroid(More)
In a previous paper, we described a successful technique, the broadband algorithm, for phasing the primary mirror segments of the Keck telescopes to an accuracy of 30 nm. Here we describe a complementary narrow-band algorithm. Although it has a limited dynamic range, it is much faster than the broadband algorithm and can achieve an unprecedented phasing(More)
Direct detection of extrasolar Jovian planets is a major scientific motivation for the construction of future extremely large telescopes such as the Thirty Meter Telescope (TMT). Such detection will require dedicated high-contrast AO systems. Since the properties of Jovian planets and their parent stars vary enormously between different populations, the(More)
We consider high-resolution optical modeling of the Thirty Meter Telescope for the purpose of error budget and instrumentation trades utilizing the Modeling and Analysis for Controlled Optical Systems tool. Using this ray-trace and diffraction model we have simulated the TMT optical errors related to multiple effects including segment alignment and phasing,(More)
Adaptive optics systems with Shack-Hartmann wavefront sensors require reconstruction of the atmospheric phase error from subaperture slope measurements, with every sensor in the array being used in the computation of each actuator command. This fully populated reconstruction matrix can result in a significant computational burden for adaptive optics systems(More)
Wave-front reconstruction with use of the Fourier transform has been validated through theory and simulation. This method provides a dramatic reduction in computational costs for large adaptive (AO) systems. Because such a reconstructor can be expressed as a matrix, it can be used as an alternative in a matrix-based AO control system. This was done with the(More)
Ultrahigh contrast imaging with giant segmented-mirror telescopes will involve light levels of order 10(-6) times that of the central diffraction spike or less. At these levels it is important to quantify accurately various diffraction effects, including segmentation geometry, intersegment gaps, obscuration by the secondary mirror and its supports, and(More)
We describe a novel method for phasing segmented optics in which the signal is the difference between inside-of-focus and outside-of-focus long-exposure infrared images. A detailed algorithm based on a correlation of this difference image with theoretical images or templates is presented. In a series of tests of this phase discontinuity sensing (PDS)(More)