Learn More
Mutations at the disconnected (disco) locus in Drosophila melanogaster cause cultures of this insect to eclose in an essentially arrhythmic manner and also nearly eliminate free-running circadian rhythms of locomotor activity. Yet disco mutants are not totally light-insensitive: Whereas they performed very poorly in tests of certain behavioral responses to(More)
The ability to react to unfavorable environmental changes is crucial for survival and reproduction, and several adaptive responses to stress have been conserved during evolution [1-3]. Specific immune and heat shock responses mediate the elimination of invading pathogens and of damaged proteins or cells [4-6]. Furthermore, MAP kinases and other signaling(More)
Clock is a semidominant X-linked mutation that results in shortening the period of Drosophila melanogaster's free-running locomotor activity rhythm from ca. 24.0 to ca. 22.5 hr. This mutation similarly shortened the phase response curve, determined by resetting activity rhythms with light pulses. Eclosion peaks for Clk cultures were separated by only 22.5(More)
Clotting is critical in limiting loss of hemolymph and initiating wound healing in insects as well as in vertebrates. Clotting is also an important immune defense, quickly forming a secondary barrier to infection, thereby immobilizing, and possibly killing bacteria directly. Here, we describe methods to assess clotting and to extract the clot from(More)
The Clock (Clk) mutation shortens circadian rhythms of locomotor activity and eclosion from ca. 24 h to 22.5-23 h. Clk was previously mapped, by meiotic recombination, very close to the period(per) locus on the X chromosome. To determine whether Clk is a mutation within the per gene or if the former is separate from the latter, two overlapping genomic(More)
Certain of the rhythm mutations in Drosophila melanogaster lead to arrhythmic locomotor activity (and aperiodic eclosion) in constant conditions. In light-dark (LD) cycles, however, such mutants exhibit clear fluctuations between high levels of activity when the lights are on and much lower ones when they are off. Our data, in contrast to some previous(More)
Free-running locomotor activity and eclosion rhythms of Drosophila melanogaster, mutant at the disconnected (disco) locus, are substantially different from the wild-type phenotype. Initial periodogram analysis revealed little or no rhythmicity (Dushay et al., 1989). We have reanalyzed the locomotor activity data using high-resolution signal analysis(More)
Lamins are intermediate filament proteins that make up the nuclear lamina, a matrix underlying the nuclear membrane in all metazoan cells that is important for nuclear form and function. Vertebrate A-type lamins are expressed in differentiating cells, while B-type lamins are expressed ubiquitously. Drosophila has two lamin genes that are expressed in A- and(More)
  • 1