Learn More
Diabetes mellitus is a chronic disease that leads to complications including heart disease, stroke, kidney failure, blindness and nerve damage. Type 2 diabetes, characterized by target-tissue resistance to insulin, is epidemic in industrialized societies and is strongly associated with obesity; however, the mechanism by which increased adiposity causes(More)
Many cofactors bind the hormone-activated estrogen receptor (ER), yet the specific regulators of endogenous ER-mediated gene transcription are unknown. Using chromatin immunoprecipitation (ChIP), we find that ER and a number of coactivators rapidly associate with estrogen responsive promoters following estrogen treatment in a cyclic fashion that is not(More)
N-CoR and SMRT are transcriptional corepressors that associate with nuclear hormone receptors (NRs) in the absence of ligand. This interaction is the molecular target of differentiation therapy for acute promyelocytic leukaemia, wherein retinoic acid dissociates corepressor from leukaemogenic receptor fusion proteins. Binding of ligand to NRs induces a(More)
Lithium is commonly used to treat bipolar disorder, which is associated with altered circadian rhythm. Lithium is a potent inhibitor of glycogen synthase kinase 3 (GSK3), which regulates circadian rhythm in several organisms. In experiments with cultured cells, we show here that GSK3beta phosphorylates and stabilizes the orphan nuclear receptor(More)
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate gene transcription in response to peroxisome proliferators and fatty acids. PPARs also play an important role in the regulation of adipocyte differentiation. It is unclear, however, what naturally occurring compounds activate each of the PPAR subtypes. To address(More)
Gene expression is dynamically regulated by chromatin modifications on histone tails, such as acetylation. In general, histone acetylation promotes transcription, whereas histone deacetylation negatively regulates transcription. The interplay between histone acetyltranserases and histone deacetylases (HDACs) is pivotal for the regulation of gene expression(More)
The physiological effects of retinoic acids (RAs) are mediated by members of two families of nuclear receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs), which are encoded by three distinct human genes, RXRalpha, RXRbeta, and RXRgamma. RARs bind both all-trans- and 9-cis-RA, whereas only the 9-cis-RA stereoisomer binds to RXRs.(More)
Repression of gene transcription is linked to regulation of chromatin structure through deacetylation of core histone amino-terminal tails. This action is mediated by histone deacetylases (HDACs) that function within active multiprotein complexes directed to the promoters of repressed genes. In vivo, HDAC3 forms a stable complex with the SMRT corepressor.(More)
Adipose tissue plays a central role in the control of energy homeostasis through the storage and turnover of triglycerides and through the secretion of factors that affect satiety and fuel utilization. Agents that enhance insulin sensitivity, such as rosiglitazone, appear to exert their therapeutic effect through adipose tissue, but the precise mechanisms(More)
Many behaviors and physiological activities in living organisms display circadian rhythms, allowing the organisms to anticipate and prepare for the diurnal changes in the living environment. In this way, metabolic processes are aligned with the periodic environmental changes and behavioral cycles, such as the sleep/wake and fasting/feeding cycles.(More)