Mitchel Stacy

Learn More
Peripheral vascular disease (PVD) is an atherosclerotic disease affecting the lower extremities, resulting in skeletal muscle ischemia, intermittent claudication, and, in more severe stages of disease, limb amputation and death. The evaluation of therapy in this patient population can be challenging, as the standard clinical indices are insensitive to(More)
Over the past few decades, there have been significant advancements in the imaging techniques of positron emission tomography (PET) and single photon emission tomography (SPECT). These changes have allowed for the targeted imaging of cellular processes and the development of hybrid imaging systems (e.g., SPECT/CT and PET/CT), which provide both functional(More)
PURPOSE The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging(More)
OBJECTIVE/BACKGROUND To evaluate the feasibility and repeatability of applying blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) in the feet to quantify regional dynamic changes in tissue oxygenation during proximal cuff occlusion and reactive hyperemia. METHODS Ten healthy male subjects underwent BOLD and T1-weighted imaging of the(More)
Peripheral vascular disease (PVD) is a progressive atherosclerotic disease that leads to stenosis or occlusion of blood vessels supplying the lower extremities. Current diagnostic imaging techniques commonly focus on evaluation of anatomy or blood flow at the macrovascular level and do not permit assessment of the underlying pathophysiology associated with(More)
Quantitative analysis of left ventricular deformation can provide valuable information about the extent of disease as well as the efficacy of treatment. In this work, we develop an adaptive multi-level compactly supported radial basis approach for deformation analysis in 3D+time echocardiography. Our method combines displacement information from shape(More)
BACKGROUND A standard quantitative imaging approach to evaluate peripheral arterial disease does not exist. Quantitative tools for evaluating arteriogenesis in vivo are not readily available, and the feasibility of monitoring serial regional changes in lower extremity perfusion has not been examined. METHODS AND RESULTS Serial changes in lower extremity(More)
Angiogenesis, or the formation of new microvasculature, is a physiological process that may occur in the setting of chronic tissue ischemia and can play an important role in improving tissue perfusion and blood flow following myocardial infarction or in the presence of peripheral vascular disease (PVD). Molecular imaging of angiogenesis within the(More)
Background Atrial fibrosis identification by late gadolinium enhancement (LGE) CMR is important as a precursor to atrial fibrillation, and may impact the outcome of catheter ablation. However, the LGE enhancement in the thin atrial wall is difficult to accurately and reproducibly detect. We sought to improve identification of fibrosis through T1-mapping,(More)
Muscle damage is a common response to unaccustomed eccentric exercise; however, the effects of skeletal muscle damage on local vascular function and blood flow are poorly understood. This study examined serial local vascular responses to flow-mediated (endothelial-dependent) and nitroglycerin-mediated (endothelial-independent) dilation in the brachial(More)