Learn More
We introduce a new large-scale video dataset designed to assess the performance of diverse visual event recognition algorithms with a focus on continuous visual event recognition (CVER) in outdoor areas with wide coverage. Previous datasets for action recognition are unrealistic for real-world surveillance because they consist of short clips showing one(More)
Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-Chih Chen, Jong Taek Lee, Saurajit Mukherjee, J. K. Aggarwal, Hyungtae Lee, Larry Davis, Eran Swears, Xiaoyang Wang, Qiang Ji, Kishore Reddy, Mubarak Shah, Carl Vondrick, Hamed Pirsiavash, Deva Ramanan, Jenny Yuen, Antonio Torralba, Bi Song, Anesco Fong, Amit Roy-Chowdhury, Mita Desai(More)
We describe a system for content-based retrieval from large surveillance video archives, using behavior, action and appearance of objects. Objects are detected, tracked, and classified into broad categories. Their behavior and appearance are characterized by action detectors and descriptors, which are indexed in an archive. Queries can be posed as video(More)
  • 1