Learn More
Graphics processors (GPU) offer the promise of more than an order of magnitude speedup over conventional processors for certain non-graphics computations. Because the GPU is often presented as a C-like abstraction (e.g., Nvidia's CUDA), little is known about the characteristics of the GPU's architecture beyond what the manufacturer has documented. This work(More)
This work demonstrates that a set of commercial and scale-out applications exhibit significant use of superpages and thus suffer from the fixed and small superpage TLB structures of some modern core designs. Other processors better cope with superpages at the expense of using power-hungry and slow fully-associative TLBs. We consider alternate designs that(More)
Die-Stacked DRAM caches offer the promise of improved performance and reduced energy by capturing a larger fraction of an application's working set than on-die SRAM caches. However, given that their latency is only 50% lower than that of main memory, DRAM caches considerably increase latency for misses. They also incur a significant energy overhead for(More)
  • 1