Mirwais Wardak

  • Citations Per Year
Learn More
In this study, kinetic parameters of the cellular proliferation tracer 18F-3′-deoxy-3′-fluoro-l-thymidine (FLT) and the amino acid probe 3,4-dihydroxy-6-18F-fluoro-l-phenylalanine (FDOPA) were measured before and early after the start of therapy, and were used to predict the overall survival (OS) of patients with recurrent malignant glioma using multiple(More)
PURPOSE The primary objective of this study was to investigate whether changes in 3'-deoxy-3'-[¹⁸F]fluorothymidine (¹⁸F-FLT) kinetic parameters, taken early after the start of therapy, could predict overall survival (OS) and progression-free survival (PFS) in patients with recurrent malignant glioma undergoing treatment with bevacizumab and irinotecan. (More)
Subcortical white matter is known to be relatively unaffected by amyloid deposition in Alzheimer’s disease (AD). We investigated the use of subcortical white matter as a reference region to quantify [18F]FDDNP binding in the human brain. Dynamic [18F]FDDNP PET studies were performed on 7 control subjects and 12 AD patients. Population efflux rate constants(More)
UNLABELLED Head movement during a PET scan (especially a dynamic scan) can affect both the qualitative and the quantitative aspects of an image, making it difficult to accurately interpret the results. The primary objective of this study was to develop a retrospective image-based movement correction (MC) method and evaluate its implementation on dynamic(More)
We evaluate an automated approach to the cortical surface mapping (CSM) method of VOI analysis in PET. Although CSM has been previously shown to be successful, the process can be long and tedious. Here, we present an approach that removes these difficulties through the use of 3D image warping to a common space. We test this automated method using studies of(More)
Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective(More)
6″-18F-fluoromaltotriose is a PET tracer that can potentially be used to image and localize most bacterial infections, much like 18F-FDG has been used to image and localize most cancers. However, unlike 18F-FDG, 6″-18F-fluoromaltotriose is not taken up by inflammatory lesions and appears to be specific to bacterial infections by targeting the maltodextrin(More)
  • 1