Miroslava Nemethova

Learn More
The purpose of this study was to investigate the role of superoxide dismutase (SOD) and catalase (CAT) in brain ischemic tolerance induced by ischemic preconditioning. Forebrain cerebral ischemia was induced in rat by four vessel occlusion. The activities of the antioxidant enzymes CuZn-SOD, Mn-SOD and CAT were measured in the hippocampus, striatum and(More)
The striking correlation between neuronal vulnerability and down-regulation of translation suggests that this cellular process plays a critical part in the cascade of pathogenetic events leading to ischaemic cell death. There is compelling evidence supporting the idea that inhibition of translation is exerted at the polypeptide chain initiation step, and(More)
In ischemic tolerance experiment, when we applied 5-min ischemia 2 days before 30-min ischemia, we achieved a remarkable (95.8%) survival of CA1 neurons. However, when we applied 5-min ischemia itself, without following lethal ischemia, we found out 45.8% degeneration of neurons in the CA1. This means that salvage of 40% CA1 neurons from postischemic(More)
Although ischemic preconditioning of the heart and brain is a well-documented neuroprotective phenomenon, the mechanism underlying the increased resistance to severe ischemia induced by a preceding mild ischemic exposure remains unclear. In this study we have determined the effect of ischemic preconditioning on ischemia/reperfusion-associated translation(More)
1. The aim of this work was to study potential mechanisms participating in postischemic protection of selectively vulnerable CA1 neurons in the hippocampus. Experiments were focused on measuring changes in endogenous antioxidant enzyme activity. 2. Forebrain cerebral ischemia was induced in a rat by four-vessel occlusion. Ten minutes of ischemia induces(More)
1. The aim of this study was to validate the role of postconditioning, used 2 days after lethal ischemia, for protection of selectively vulnerable brain neurons against delayed neuronal death. 2. Eight, 10, or 15 min of transient forebrain ischemia in rat (four-vessel occlusion model) was used as initial lethal ischemia. Fluoro Jade B, the marker of(More)
The aim of this study was to validate the ability of postconditioning, used 2 days after kainate intoxication, to protect selectively vulnerable hippocampal CA1 neurons against delayed neuronal death. Kainic acid (8 mg/kg, i.p.) was used to induce neurodegeneration of pyramidal CA1 neurons in rat hippocampus. Fluoro Jade B, the specific marker of(More)
Aims The present study was undertaken to evaluate possible neuroprotective effect of bradykinin against delayed neuronal death in hippocampal CA1 neurons if applied two days after transient forebrain ischemia in the rat. Methods Transient forebrain ischemia was induced in male Wistar rats by four-vessel occlusion for 8 min. To assess efficacy of bradykinin(More)
The effects of a selective inducible nitric oxide synthase inhibitor aminoguanidine (AG) on neuronal cells survival in hippocampal CA1 region after middle cerebral artery occlusion (MCAO) were examined. Transient focal cerebral ischemia was induced in rats by 60 or 90 min of MCAO, followed by 7 days of reperfusion. AG treatment (150 mg/kg i.p.)(More)
Bradykinin is considered an important mediator of the inflammatory response in both the peripheral and the central nervous system and it has attracted recent interest as a potential mediator of brain injury following stroke. Bradykinin is recognized to play an important role in ischemic brain. We investigated the effect of bradykinin postconditioning on(More)