Learn More
Gender-related differences in dexamethasone binding to corticosteroid receptors (CR) and in glucocorticoid receptor (GR) protein level in the pituitary, hypothalamus, hippocampus and prefrontal cortex were studied before and after antidepressant fluoxetine administration to both unstressed and rats exposed to a chronic social isolation stress. Untreated(More)
Chronic stress and impaired glucocorticoid receptor (GR) feedback are important factors for the compromised hypothalamic-pituitary-adrenal (HPA) axis activity. We investigated the effects of chronic 21 day isolation of Wistar rats on the extrinsic negative feedback part of HPA axis: hippocampus (HIPPO) and prefrontal cortex (PFC). In addition to serum(More)
One of the most consistent biological findings in major depression (MDD) is the altered activity of the hypothalamic-pituitary-adrenal (HPA) axis. It is not surprising that glucocorticoid receptor (GR), the common mechanism for stress-related changes in brain function, is a potential target of antidepressant drugs and therapies. All effective antidepressant(More)
Mitochondrial dysfunction is increasingly recognized as a key component in compromised neuroendocrine stress response and, among other etiological causes, it may also involve action of glucocorticoid hormones. In the current study we followed glucocorticoid receptor and identified its mitochondrial phosphoisophorms in hippocampus and prefrontal brain cortex(More)
Plastic response and successful adaptation to stress are of particular importance in the hippocampus, where chronic stress may cause cell death instead of neural remodeling. Structural modifications that occur both in the brain of depressed patients and animal stress models may be reversed by antidepressants. Since morphological changes induced by stress(More)
BACKGROUND Oxidative stress is reliably observed in major depressive disorder (MDD). However, molecular data on the principal cellular redox-sensitive transcriptional factors and the levels of their downstream-regulated antioxidant enzymes in MDD are scarce. METHODS In the peripheral blood mononuclear cells (PBMC) of subjects with a current episode of MDD(More)
Chronic exposure to stress is associated with different behavioral and neurological syndromes including impaired excitability of nerve cells in hippocampus (HIPPO) and prefrontal cortex (PFC), regions of the brain that are important for adaptation. The successful adaptation to stress involves negative feedback at the level of the(More)
The impaired glucocorticoid receptor (GR) signaling has long been considered one of the cornerstones in understanding the pathophysiology of depression. Since the phosphorylation of GR is very important for GR function, in this study we investigated whether GR phosphorylation at serine 211 (pGR-S211) and serine 226 (pGR-S226) is altered in patients with(More)
Knowledge of the antioxidant defense in the stress-responding structures of the CNS is of crucial importance, since oxidative damage is a phenomenon accompanying many stress-related disorders. Regulation of antioxidative and anti-inflammatory defense through Nrf2 (nuclear factor 2 eritroid related factor 2) pathway has emerged as a promising approach for(More)
Chronic psychosocial isolation stress (CPSI) modulates glucocorticoid receptor (GR) functioning in Wistar male rat hippocampus (HIPPO) through alteration of nuclear GR phosphorylation and its upstream kinases signaling, which parallels animal depressive-like behavior. The current study investigated potential gender specificities regarding the effect of(More)