Mirko Meboldt

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
The current article presents a novel physiological feedback controller for turbodynamic ventricular assist devices (tVADs). This controller is based on the recording of the left ventricular (LV) pressure measured at the inlet cannula of a tVAD thus requiring only one pressure sensor. The LV systolic pressure (SP) is proposed as an indicator to determine the(More)
Turbodynamic left ventricular assist devices (LVADs) provide a continuous flow depending on the speed at which the pump is set, and do not adapt to the changing requirements of the patient. The limited adaptation of the pump flow (PF) to the amount of venous return can lead to ventricular suction or overload. Physiologic control may compensate such(More)
Tumor motion during radiation therapy increases the irradiation of healthy tissue. However, this problem may be mitigated by moving the patient via the treatment couch such that the tumor motion relative to the beam is minimized. The treatment couch poses limitations to the potential mitigation, thus the performance of the Protura (CIVCO) treatment couch(More)
Various control and monitoring algorithms have been proposed to improve the left-ventricular assist device (LVAD) therapy by reducing the still-occurring adverse events. We developed a novel multi-objective physiological control system that relies on the pump inlet pressure (PIP). Signal-processing algorithms have been implemented to extract the required(More)
Mobile eye tracking is beneficial for the analysis of human–machine interactions of tangible products, as it tracks the eye movements reliably in natural environments, and it allows for insights into human behaviour and the associated cognitive processes. However, current methods require a manual screening of the video footage, which is time-consuming and(More)
A mock circulation allows the in vitro investigation, development, and testing of ventricular assist devices. An aqueous-glycerol solution is commonly used to mimic the viscosity of blood. Due to evaporation and temperature changes, the viscosity of the solution drifts from its initial value and therefore, deviates substantially from the targeted viscosity(More)
Ventricular assist devices (VADs) are mechanical blood pumps that are clinically used to treat severe heart failure. Pulsatile VADs (pVADs) were initially used, but are today in most cases replaced by turbodynamic VADs (tVADs). The major concern with the pVADs is their size, which prohibits full pump body implantation for a majority of patients. A reduction(More)
The current paper analyzes the performance of a physiological controller for turbodynamic ventricular assist devices (tVADs) during acute patho-physiological events. The numerical model of the human blood circulation implemented on our hybrid mock circulation was extended in order to simulate the Valsalva maneuver (VM) and premature ventricular contractions(More)
The technology of 3D-printing has allowed the production of entirely soft pumps with complex chamber geometries. We used this technique to develop a completely soft pneumatically driven total artificial heart from silicone elastomers and evaluated its performance on a hybrid mock circulation. The goal of this study is to present an innovative concept of a(More)
Mechanical compliance is important for a robust and safe physical interaction of robots with humans and unstructured environments. Using adjustable stiffness, the advantages of compliant and stiff systems can be combined and thus the versatility of a robot increased. The realisation of adjustable stiffness in robot joints through compliant mechanisms shows(More)