Learn More
The "funny" (pacemaker) current has unusual characteristics, including activation on hyperpolarization, permeability to K(+) and Na(+), modulation by internal cAMP, and a tiny, single-channel conductance. In cardiac cells and neurons, pacemaker channels control repetitive activity and excitability. The recent cloning of HCN subunits provides new insight(More)
Hyperpolarization-activated (pacemaker) channels are dually gated by negative voltage and intracellular cAMP. Kinetics of native cardiac f-channels are not compatible with HH gating, and require closed/open multistate models. We verified that members of the HCN channel family (mHCN1, hHCN2, hHCN4) also have properties not complying with HH gating, such as(More)
BACKGROUND Although we know much about the molecular makeup of the sinus node (SN) in small mammals, little is known about it in humans. The aims of the present study were to investigate the expression of ion channels in the human SN and to use the data to predict electrical activity. METHODS AND RESULTS Quantitative polymerase chain reaction, in situ(More)
Human cDNA coding for the hyperpolarization-activated "pacemaker" channel HCN2 was expressed in Phoenix cells and yielded an inward current (IhHCN2) activated on hyperpolarization. The average IhHCN2 was half-activated at -83.1 mV and its kinetics could be described by second-order Hodgkin-Huxley gating. The time constant curve was bell-shaped and peaked at(More)
1. Single cells were isolated from the sinus node region of rabbits (2 days old to adult) to study the age-dependent contribution of the sodium current (iNa) to pacemaker activity. 2. Experiments were conducted in 50 mM Na(+)-Ca(2+)-free solution. All newborn cells (2-19 days) exhibited a TTX-sensitive, Mn(2+)-insensitive fast inward Na+ current (peak(More)
Isolated newborn, but not adult, rabbit sinoatrial node (SAN) cells exhibit spontaneous activity that (unlike adult) are highly sensitive to the Na(+) current (I(Na)) blocker TTX. To investigate this TTX action on automaticity, cells were voltage clamped with ramp depolarizations mimicking the pacemaker phase of spontaneous cells (-60 to -20 mV, 35 mV/s).(More)
HCN channels are the molecular subunits of native funny (f-) channels of cardiac pacemaker cells and neurons. Although funny channels were first functionally described in cardiac cells in the late 1970s, cloning of HCN channels, of which four subunits are known today (HCN1-4), had to wait some 20 years to be accomplished, which delayed the investigation of(More)
'Funny-' (f-) channels of cardiac sino-atrial node (SAN) cells are key players in the process of pacemaker generation and mediate the modulatory action of autonomic transmitters on heart rate. The molecular components of f-channels are the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. Of the four HCN isoforms known, two (HCN4 and(More)
"Funny" (f-) channels have a key role in generation of spontaneous activity of pacemaker cells and mediate autonomic control of cardiac rate; f-channels and the related neuronal h-channels are composed of hyperpolarization-activated, cyclic nucleotide-gated (HCN) channel subunits. We have investigated the block of f-channels of rabbit cardiac sino-atrial(More)
We found that sinus bradycardia in members of a large family was associated with a mutation in the gene coding for the pacemaker HCN4 ion channel. Pacemaker channels of the sinoatrial node generate spontaneous activity and mediate cyclic AMP (cAMP)-dependent autonomic modulation of the heart rate. The mutation associated with bradycardia is located near the(More)