Mirja Hartmann

Learn More
The detection and removal of bacteria, such as E. coli in aqueous environments by using safe and readily available means is of high importance. Here we report on the synthesis of nanodiamonds (ND) covalently modified with specific carbohydrates (glyco-ND) for the precipitation of type 1 fimbriated uropathogenic E. coli in solution by mechanically stable(More)
There is a wide range of immobilisation reactions to tether substrates to a variety of surfaces for array-based analysis. Most of these immobilisation strategies are specific for a particular surface and require an additional linker to be attached to the substrate or the surface. Furthermore, the analysis of functionalised surfaces is often restricted to(More)
The identification of carbohydrate-protein interactions is central to our understanding of the roles of cell-surface carbohydrates (the glycocalyx), fundamental for cell-recognition events. Therefore, there is a need for fast high-throughput biochemical tools to capture the complexity of these biological interactions. Here, we describe a rapid method for(More)
Bacterial adhesion to glycosylated surfaces is a key issue in human health and disease. Inhibition of bacterial adhesion by suitable carbohydrates could lead to an anti-adhesion therapy as a novel approach against bacterial infections. A selection of five α-mannosides has been evaluated as inhibitors of bacterial adhesion to the polysaccharide mannan, as(More)
Bacterial adhesion to the glycocalyx of human host cells is of biological and medicinal importance. This process is often initiated by the interaction of bacterial lectins and specific carbohydrate ligands. Thus, adhesion of bacterial cells to glycosylated surfaces is a suitable model system to study various parameters of lectin-mediated carbohydrate(More)
Bacteria use long proteinaceous appendages, called fimbriae or pili, to adhere to the surfaces of their host cells. Widely distributed among the Enterobacteriacae are type 1 fimbriae that mediate mannose-specific bacterial adhesion through the lectin FimH, located at the fimbrial tips. It is possible to design synthetic mannosides such that they show high(More)
In order to test relevant structural parameters for effective inhibition of mannose-specific bacterial adhesion, bi- and trivalent glycopeptide α-D-mannopyranosides were synthesized that differ in their conformational properties as well as in the spatial arrangement of attached mannosyl residues. They were tested in an inhibition adhesion assay with(More)
  • 1