Mirja Carlsson Möller

Learn More
The trxA gene is regarded as essential in Bacillus subtilis, but the roles of the TrxA protein in this gram-positive bacterium are largely unknown. Inactivation of trxA results in deoxyribonucleoside and cysteine or methionine auxotrophy. This phenotype is expected if the TrxA protein is important for the activity of the class Ib ribonucleotide reductase(More)
Bacillus subtilis is an endospore-forming bacterium. There are indications that protein disulfide linkages occur in spores, but the role of thiol-disulfide chemistry in spore synthesis is not understood. Thiol-disulfide oxidoreductases catalyze formation or breakage of disulfide bonds in proteins. CcdA is the only B. subtilis thiol-disulfide oxidoreductase(More)
Bacillus subtilis StoA is an extracytoplasmic thiol-disulfide oxidoreductase (TDOR) important for the synthesis of the endospore peptidoglycan cortex protective layer. Here we demonstrate that StoA is membrane-associated in B. subtilis and report the crystal structure of the soluble protein lacking its membrane anchor. This showed that StoA adopts a(More)
We present a mass spectrometry-based method for the identification and quantification of membrane proteins using the low-specificity protease Proteinase K, at very high pH, to digest proteins isolated by a modified SDS-PAGE protocol. The resulting peptides are modified with a fragmentation-directing isotope labeled tag. We apply the method to quantify(More)
Thiol-disulfide oxidoreductases catalyze formation, disruption, or isomerization of disulfide bonds between cysteine residues in proteins. Much is known about the functional roles and properties of this class of redox enzymes in vegetative bacterial cells but their involvement in sporulation has remained unknown until recently. Two membrane-embedded(More)
  • 1