Miriam Nagyova

Learn More
Ependymal cells (EC) in the spinal cord central canal (CC) are believed to be responsible for the postnatal neurogenesis following pathological or stimulatory conditions. In this study, we have analyzed the proliferation of the CC ependymal progenitors in adult rats processed to compression SCI or enhanced physical activity. To label dividing cells, a(More)
BACKGROUND CONTEXT In recent years, hypothermia has been described as a therapeutic approach that leads to potential protective effects via minimization of secondary damage consequences, reduction of neurologic deficit, and increase of motor performance after spinal cord injury (SCI) in animal models and humans. PURPOSE The objective of this study was to(More)
Inosine, a purine nucleoside, is one of the novel substances, which can preserve the neuronal and glial viability and stimulate intact neurons to extend axons. We, herein, evaluated the effect of oral inosine treatment on spinal cord injury (SCI) recovery by means of locomotor and bladder function, quantification of neurons and spinal cord tissue sparing.(More)
The embryonic, neonatal, as well as adult rat spinal cords harbor a pool of neural stem cells (NSCs), which may be easily isolated and used to replace neuronal cell loss or remyelinate damaged axons following various neurodegenerative disorders. In the present study we have used magnetic cell sorting (MACs) technology to generate enriched oligodendroglial(More)
Mesenchymal stem cells (MSCs) have generated a great deal of promise as a potential source of cells for cell-based therapies. Various labeling techniques have been developed to trace MSC survival, migration, and behavior in vitro or in vivo. In the present study, we labeled MSCs derived from rat bone marrow (rMSCs) with florescent membrane dyes PKH67 and(More)
  • 1