Miriam Martini

Learn More
BACKGROUND Following the discovery that mutant KRAS is associated with resistance to anti-epidermal growth factor receptor (EGFR) antibodies, the tumours of patients with metastatic colorectal cancer are now profiled for seven KRAS mutations before receiving cetuximab or panitumumab. However, most patients with KRAS wild-type tumours still do not respond.(More)
PURPOSE Cetuximab or panitumumab are effective in 10% to 20% unselected metastatic colorectal cancer (CRC) patients. KRAS mutations account for approximately 30% to 40% patients who are not responsive. The serine-threonine kinase BRAF is the principal effector of KRAS. We hypothesized that, in KRAS wild-type patients, BRAF mutations could have a(More)
The monoclonal antibodies (moAb) panitumumab and cetuximab target the epidermal growth factor receptor (EGFR) and have proven valuable for the treatment of metastatic colorectal cancer (mCRC). EGFR-mediated signaling involves two main intracellular cascades: on one side KRAS activates BRAF, which in turn triggers the mitogen-activated protein kinases. On(More)
BACKGROUND KRAS mutations occur in 35-45% of metastatic colorectal cancers (mCRC) and preclude responsiveness to EGFR-targeted therapy with cetuximab or panitumumab. However, less than 20% patients displaying wild-type KRAS tumors achieve objective response. Alterations in other effectors downstream of the EGFR, such as BRAF, and deregulation of the(More)
Despite development of novel agents targeting oncogenic pathways, matching targeted therapies to the genetic status of individual tumors is proving to be a daunting task for clinicians. To improve the clinical efficacy and to reduce the toxic side effects of treatments, a deep characterization of genetic alterations in different tumors is required. The(More)
The phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates several cellular processes and it's one of the most frequently deregulated pathway in human tumors. Given its prominent role in cancer, there is great interest in the development of inhibitors able to target several members of PI3K signaling pathway in clinical trials. These drug(More)
Despite the development of drugs inhibiting the oncogenic proteins that cancer cells are dependent on, attempts to match targeted therapies to the genetic makeup of individual tumors is proving more difficult than expected. Until now, the paradigm has been a binary correlation between a mutated cancer gene and response to a given therapy. However, recent(More)
BYL719, which selectively inhibits the alpha isoform of the phosphatidylinositol 3-kinase (PI3K) catalytic subunit (p110a), is currently in clinical trials for the treatment of solid tumors, especially luminal breast cancers with PIK3CA mutations and/or HER2 amplification. This study reveals that, even among these sensitive cancers, the initial efficacy of(More)
A critical step toward defining tailored therapy in patients with cancer is the identification of genetic interactions that may impair-or boost-the efficacy of selected therapeutic approaches. Cell models able to recapitulate combinations of genetic aberrations are important to find drug-genotype interactions poorly affected by the heterogeneous genetics of(More)
The introduction of KRAS testing as a diagnostic tool to select patients for epidermal growth factor receptor (EGFR)-targeted cetuximab- or panitumumab-based therapies for metastatic colorectal cancer is widely regarded as a key advance in the field of personalized cancer medicine. Oncologists are now facing emerging issues in the treatment of metastatic(More)