Miriam Furst

Learn More
The changes in perception and in the binaural difference waveform (BD) for dichotic clicks with interaural time and level differences (ITDs and ILDs) are compared. Only beta, the first major peak of the BD, correlated with the perceptual measurements. Whenever beta is clearly present, the clicks are perceived as a unitary fused image. Whenever the clicks(More)
Subjects with brainstem lesions due to either an infarct or multiple sclerosis (MS) underwent two types of binaural testing (lateralization testing and interaural discrimination) for three types of sounds (clicks and high and low frequency narrow-band noise) with two kinds of interaural differences (level and time). Two major types of abnormalities were(More)
The main purpose of this study was to describe and compare lateralization of earphone-presented stimuli in younger and older individuals. Lateralization functions, relating perceived location to either interaural time differences (ITDs) or interaural level differences (ILDs) were determined for 78 subjects, aged 21-88 years, who responded by pressing one of(More)
A previous study by Furst et al. (1985) has shown that in healthy subjects brainstem responses evoked by binaural auditory stimuli with interaural time difference (ITD) and interaural level difference (ILD) include information about the integration of data received by both ears. A correlation was found between the first major peak of the binaural difference(More)
The ability to lateralize dichotic clicks with either interaural time delays (ITD) or interaural level differences (ILD) was tested in seven multiple sclerosis (MS) subjects who had normal audiograms. Along with the psychoacoustical tests, magnetic resonance images (MRI) of the subjects' brainstem were obtained. After matching each MRI section with the(More)
In order to relate human auditory processing to physiological and anatomical experimental animal data, we have examined the interrelationships between behavioral, electrophysiological and anatomical data obtained from human subjects with focal brainstem lesions. Thirty-eight subjects with multiple sclerosis were studied with tests of interaural time and(More)
Comparison between changes that occur simultaneously on spontaneous otoacoustic emissions (SOAEs) and on other cochlear origin phenomena can contribute to the understanding of cochlear micromechanical activity. The temporary changes that arise after short noise exposure are investigated in the following paper. The effects of noise exposure on the threshold(More)
Magnetic resonance (MR) imaging, brainstem auditory evoked potentials (BAEPs), and tests of interaural time and level discrimination were performed on sixteen subjects with multiple sclerosis (MS). Objective criteria were used to define MR lesions. Of the eleven subjects in whom no pontine lesions were detected and the one subject who had pontine lesions(More)
Binaural processing of sounds in mammals is presumably initiated within the auditory nuclei of the caudal pons. The binaural difference waveform (BD) can be derived from the sum of the waveforms evoked by right monaural clicks plus left monaural clicks minus the waveform evoked by binaural clicks. In adults, the BD's first positive peak (beta) is large only(More)