Mireille Bélanger

Learn More
The energy requirements of the brain are very high, and tight regulatory mechanisms operate to ensure adequate spatial and temporal delivery of energy substrates in register with neuronal activity. Astrocytes-a type of glial cell-have emerged as active players in brain energy delivery, production, utilization, and storage. Our understanding of(More)
In recent years, previously unsuspected roles of astrocytes have been revealed, largely owing to the development of new tools enabling their selective study in situ. These exciting findings add to the large body of evidence demonstrating that astrocytes play a central role in brain homeostasis, in particular via the numerous cooperative metabolic processes(More)
The glyoxalase system is the most important pathway for the detoxification of methylglyoxal (MG), a highly reactive dicarbonyl compound mainly formed as a by-product of glycolysis. MG is a major precursor of advanced glycation end products (AGEs), which are associated with several neurodegenerative disorders. Although the neurotoxic effects of MG and AGEs(More)
Glucose is the main energy substrate for the brain. There is now extensive evidence indicating that the metabolic profile of neural cells with regard to glucose utilization and glycolysis rate is not homogenous, with a marked propensity for glycolytic glucose processing in astrocytes compared to neurons. Methylglyoxal, a highly reactive dicarbonyl compound,(More)
Astrocytes are the main neural cell type responsible for the maintenance of brain homeostasis. They form highly organized anatomical domains that are interconnected into extensive networks. These features, along with the expression of a wide array of receptors, transporters, and ion channels, ideally position them to sense and dynamically modulate neuronal(More)
Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects(More)
Igor Allaman,1* Mathilde Gavillet,1* Mireille Bélanger,1 Thierry Laroche,2 David Viertl,3 Hilal A. Lashuel,3 and Pierre J. Magistretti1,4 1Laboratory of Neuroenergetics and Cellular Dynamics, 2Cellular Imaging Facility, and 3Laboratory of Molecular Neurobiology and Functionnal Neuroproteomics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne,(More)
We have previously reported that the pro-inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) induce profound modifications of the metabolic profile of astrocytes. The present study was undertaken to further characterize the effects of cytokines in astrocytes and to determine whether similar effects could also be observed in(More)
  • 1