Learn More
The increasing pervasiveness of location-acquisition technologies (GPS, GSM networks, etc.) is leading to the collection of large spatio-temporal datasets and to the opportunity of discovering usable knowledge about movement behaviour, which fosters novel applications and services. In this paper, we move towards this direction and develop an extension of(More)
Preserving individual privacy when publishing data is a problem that is receiving increasing attention. According to the fc-anonymity principle, each release of data must be such that each individual is indistinguishable from at least k - 1 other individuals. In this paper we study the problem of anonymity preserving data publishing in moving objects(More)
Spatio-temporal, geo-referenced datasets are growing rapidly, and will be more in the near future, due to both technological and social/commercial reasons. From the data mining viewpoint, spatio-temporal trajectory data introduce new dimensions and, correspondingly , novel issues in performing the analysis tasks. In this paper, we consider the clustering(More)
One of the most common operations in exploration and analysis of various kinds of data is clustering, i.e. discovery and interpretation of groups of objects having similar properties and/or behaviors. In clustering, objects are often treated as points in multi-dimensional space of properties. However, structurally complex objects, such as trajectories of(More)
Agents are small programs that autonomously take actions based on changes in their environment or “state”. Over the last few years, there has been an increasing number of efforts to build agents that can interact and/or collaborate with other agents. In one of these efforts Eiter et al. [1999] have shown how agents may be built on top of legacy(More)