Miran Yoon-Robarts

Learn More
We report here the crystal structure of an SF3 DNA helicase, Rep40, from adeno-associated virus 2 (AAV2). We show that AAV2 Rep40 is structurally more similar to the AAA(+) class of cellular proteins than to DNA helicases from other superfamilies. The structure delineates the expected Walker A and B motifs, but also reveals an unexpected "arginine finger"(More)
We have recently published the crystal structure of the adeno-associated virus type 2 superfamily 3 (SF3) helicase Rep40. Although based on its biochemical properties it is unlikely that Rep40 plays a central role as a replicative helicase the involvement of this motor protein in DNA packaging has recently been demonstrated. Here we focused our attention on(More)
Rep68 is a multifunctional protein of the adeno-associated virus (AAV), a parvovirus that is mostly known for its promise as a gene therapy vector. In addition to its role as initiator in viral DNA replication, Rep68 is essential for site-specific integration of the AAV genome into human chromosome 19. Rep68 is a member of the superfamily 3 (SF3) helicases,(More)
Adeno-associated virus type 2 Rep endonuclease activity is necessary for both viral DNA replication and site-specific integration of the viral genome into human chromosome 19. The biochemical activities required for site-specific endonuclease activity (namely specific DNA binding and transesterification activity) have been mapped to the amino-terminal(More)
The nonpathogenic human adeno-associated virus (AAV) has developed a mechanism to integrate its genome into human chromosome 19 at 19q13.4 (termed AAVS1), thereby establishing latency. Here, we provide evidence that the chromosomal signals required for site-specific integration are conserved in the mouse genome proximal to the recently identified Mbs85(More)
  • 1