Learn More
The tyrosine kinase Src has been implicated in the process of osteoclast-mediated bone resorption. Here, we describe a novel class of Src inhibitors, substituted 5,7-diphenyl-pyrrolo[2,3-d]pyrimidines, and characterize one of them, CGP77675, in vitro and in models of bone resorption in vivo. In vitro, CGP77675 inhibited phosphorylation of peptide substrates(More)
Osteoclasts are cells of hematopoietic origin with a unique property of dissolving bone; their inhibition is a principle for treatment of diseases of bone loss. Protocols for generation of human osteoclasts in vitro have been described, but they often result in cells of low activity, raising questions on cell phenotype and suitability of such assays for(More)
c-Src is a proto-oncogene, belonging to the nonreceptor protein kinases family, which plays a prominent role in carcinogenesis. In this study, we tested the hypothesis that c-Src could promote breast cancer metastasis acting on several cell types and that pharmacological disruption of its kinase activity could be beneficial for the treatment of metastases.(More)
To examine early events in osteoblast differentiation, we analyzed the expression of about 9,400 genes in the murine MC3T3 cell line, whose robust differentiation was documented cytochemically and molecularly. The cells were stimulated for 1 and 3 days with the osteogenic stimulus containing bone morphogenic protein 2. Total RNA was extracted and analyzed(More)
Cytokines macrophage colony stimulating factor (M-CSF) and the receptor activator of NFkappaB ligand (RANKL) induce differentiation of bone marrow hematopoietic precursor cells into bone-resorbing osteoclasts without the requirement for stromal cells of mesenchymal origin. We used this recently described mouse cell system and oligonucleotide microarrays(More)
Excess of Vitamin A (retinol) and related compounds (retinoids) induces bone fragility and is associated with increased hip fracture incidence in humans. Yet, their impact on the adult skeleton has been studied in relatively little detail. It is assumed that they induce generalized bone loss and decrease long-bone thickness due to reduction of radial bone(More)
  • Mira Susa
  • International journal of molecular medicine
  • 1999
Fluoride is an acknowledged bone anabolic agent. Nevertheless, a narrow therapeutic window and the adverse effects at higher therapeutic doses prevent broad clinical application of fluoride for treatment of diseases of bone loss, such as osteoporosis. The cellular and molecular mechanisms of fluoride action are poorly understood. recent advances in the(More)
The transcription factor Hey1, a known Notch target gene of the HES family, has recently been described as a target gene of bone morphogenetic protein-2 (BMP-2) during osteoblastic differentiation in vitro. As the role of Hey1 in skeletal physiology is unknown, we analyzed bones of mice ubiquitously lacking or overexpressing Hey1. This strategy enabled us(More)
Two bona fide c-Src inhibitors, denominated CGP77675 and CGP76030, reduced in a time- and concentration-dependent manner (i) the proliferation of the PC3 prostate carcinoma cell line, as assessed by the [3H]-thymidine incorporation test, (ii) the capacity of PC3 cells to adhere and spread on Matrigel substrate, as determined by crystal violet staining,(More)
Phosphatidylinositol 3-kinase (PI 3-kinase) activity has been detected in immune complexes with active protein tyrosine kinases, and its products have been measured in intact cells in response to growth stimuli. Both methods do not directly evaluate whole cell PI 3-kinase enzymatic activity. We have developed a sensitive method to measure PI 3-kinase(More)