Learn More
Multipotent Caenorhabditis elegans vulval precursor cells (VPCs) choose among three fates (1 degrees, 2 degrees, and 3 degrees ) in response to two intercellular signals: the EGF family growth factor LIN-3 induces 1 degrees fates at high levels and 2 degrees fates at low levels; and a signal via the receptor LIN-12 induces 2 degrees fates. If the level of(More)
In C. elegans, the descendants of the 1 degrees vulval precursor cell (VPC) establish a fixed spatial pattern of two different cell fates: E-F-F-E. The two inner granddaughters attach to the somatic gonadal anchor cell (AC) and generate four vulF cells, while the two outer granddaughters produce four vulE progeny. zmp-1::GFP, a molecular marker that(More)
Studies of C. elegans vulval development provide insights into the process of pattern formation during animal development. The invariant pattern of vulval precursor cell fates is specified by the integration of at least two signaling systems. Recent findings suggest that multiple, partially redundant mechanisms are involved in patterning the vulval(More)
The role of autophagy in cancer development and response to cancer therapy has been a subject of debate. Here we demonstrate that a series of ruthenium(II) complexes containing a β-carboline alkaloid as ligand can simultaneously induce autophagy and apoptosis in tumor cells. These Ru(II) complexes are nuclear permeable and highly active against a panel of(More)
Three novel Ru(II) complexes of the general formula [Ru(N-N)(2)(Norharman)(2)](SO(3)CF(3))(2), where N-N = 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), 4,7-diphenyl-1,10-phenanthroline (DIP, 3) and Norharman (9H-pyrido[3,4-b]indole) is a naturally occurring β-carboline alkaloid, have been synthesized and characterized. The molecular structures(More)
  • 1