Learn More
An in-depth experimental investigation was conducted into the use of a graphene oxide-based saturable absorber implemented on a side-polished fiber platform for femtosecond pulse generation in the 2 μm region. First, it was experimentally shown that an all-fiberized thulium-holmium (Tm-Ho)-codoped fiber ring laser with reduced cavity length can produce(More)
We experimentally demonstrate a femtosecond mode-locked, all-fiberized laser that operates in the 2 μm region and that incorporates a saturable absorber based on a bulk-structured bismuth telluride (Bi(2)Te(3)) topological insulator (TI). Our fiberized saturable absorber was prepared by depositing a mechanically exfoliated, ~30 μm-thick Bi(2)Te(3) TI layer(More)
We demonstrate the use of an all-fiberized, mode-locked 1.94 μm laser with a saturable absorption device based on a tungsten disulfide (WS2)-deposited side-polished fiber. The WS2 particles were prepared via liquid phase exfoliation (LPE) without centrifugation. A series of measurements including Raman spectroscopy, scanning electron microscopy (SEM), and(More)
We propose a long-reach hybrid DWDM-TDM PON architecture in which the proposed amplifier can be effectively used. The feasibility of using the proposed amplifier for long-reach hybrid DWDM-TDM PONs is experimentally investigated by performing a series of signal transmission experiments with an exemplary PON configuration having a total reach of 75 km and 8(More)
We propose a band-separated, bidirectional amplifier based on a bismuth-based erbium-doped fiber for use in long-reach hybrid dense wavelength division multiplexing-time division multiplexing passive optical networks (DWDM-TDM-PONs). We also propose a long-reach hybrid DWDM-TDM-PON architecture in which the proposed amplifier can be effectively used. The(More)
An actively Q-switched thulium-holmium-codoped fiber laser incorporating an Si-based variable optical attenuator (VOA) is experimentally demonstrated. It has been shown that an Si-based VOA with a response time of hundreds of nanoseconds can be used as a cost-effective 2 μm Q switch due to its extremely wide operating bandwidth from 1.5 to 2 μm, and low(More)
  • 1