Minos-Timotheos Matsoukas

Learn More
Derangement of cellular immunity is central in the pathophysiology of multiple sclerosis (MS) and is often manifested by abnormal cytokine production. We investigated cytokine secretion in peripheral blood mononuclear cells (PBMC) of 18 MS patients and 15 controls and correlated cytokine polarization with the nature of antigenic stimulus. We synthesized two(More)
There is a need for novel drugs for the treatment of infectious diseases, autoimmunity and cancer. Cyclic peptides constitute a class of compounds that have made crucial contributions to the treatment of certain diseases. Penicillin, Vancomycin, Cyclosporin, the Echinocandins and Bleomycin are well-known cyclic peptides. Cyclic peptides, compared to linear(More)
Innovative crystallographic techniques have resulted in an exponential growth in the number of solved G-protein coupled receptor (GPCR) structures and a better understanding of the mechanisms of class A receptor activation and G protein binding. The recent release of the type 1 receptor for the corticotropin-releasing factor and the glucagon receptor(More)
The corticotropin-releasing factor (CRF) type 1 receptor (CRF1R) for the 41-amino acid peptide CRF is a class B G protein-coupled receptor, which plays a key role in the response of our body to stressful stimuli and the maintenance of homeostasis by regulating neural and endocrine functions. CRF and related peptides, such as sauvagine, bind to the(More)
Amino acid mutations to agonist peptide epitopes of myelin proteins have been used to modulate immune responses and experimental autoimmune encephalomyelitis (EAE, animal model of multiple sclerosis). Such amino acid alteration are termed, altered peptide ligands (APL). We have shown that the agonist myelin basic protein (MBP) 87-99 epitope (MBP87-99) with(More)
Altered peptide ligands that alter immune responses are a promising approach to the immunotherapy of multiple sclerosis. Cyclic peptides are of interest because the limited stability of linear peptides restricts their use in vivo. We designed and synthesized a cyclic double mutant peptide from MBP(87-99)-[cyclo(87-99)[A(91),A(96)]MBP(87-99)]. Immunization(More)
The ligand binding determinants for the angiotensin II type 1 receptor (AT1R), a G protein-coupled receptor (GPCR), have been characterized by means of computer simulations. As a first step, a pharmacophore model of various known AT1R ligands exhibiting a wide range of binding affinities was generated. Second, a structural model of AT1R was built making use(More)
This study investigates the binding of angiotensin II (AngII) to the angiotensin II type 1 receptor (AT1R), taking into consideration several known activation elements that have been observed for G-protein-coupled receptors (GPCRs). In order to determine the crucial interactions of AngII upon binding, several MD simulations were implemented using AngII(More)
In the big data era, voluminous datasets are routinely acquired, stored and analyzed with the aim to inform biomedical discoveries and validate hypotheses. No doubt, data volume and diversity have dramatically increased by the advent of new technologies and open data initiatives. Big data are used across the whole drug discovery pipeline from target(More)
Peptides and proteins are attractive initial leads for the rational design of bioactive molecules. Several natural cyclic peptides have recently emerged as templates for drug design due to their resistance to chemical or enzymatic hydrolysis and high selectivity to receptors. The development of practical protocols that mimic the power of nature's strategies(More)