Minoru Wakamori

Learn More
Redox status changes exert critical impacts on necrotic/apoptotic and normal cellular processes. We report here a widely expressed Ca2+-permeable cation channel, LTRPC2, activated by micromolar levels of H2O2 and agents that produce reactive oxygen/nitrogen species. This sensitivity of LTRPC2 to redox state modifiers was attributable to an agonistic binding(More)
Canonical transient receptor potential (TRPC) channels control influxes of Ca(2+) and other cations that induce diverse cellular processes upon stimulation of plasma membrane receptors coupled to phospholipase C (PLC). Invention of subtype-specific inhibitors for TRPCs is crucial for distinction of respective TRPC channels that play particular physiological(More)
The molecular organization of presynaptic active zones is important for the neurotransmitter release that is triggered by depolarization-induced Ca2+ influx. Here, we demonstrate a previously unknown interaction between two components of the presynaptic active zone, RIM1 and voltage-dependent Ca2+ channels (VDCCs), that controls neurotransmitter release in(More)
Recent genetic and molecular biological analyses have revealed many forms of inherited channelopathies. Homozygous ataxic mice, tottering (tg) and leaner (tgla) mice, have mutations in the P/Q-type Ca2+ channel alpha1A subunit gene. Although their clinical phenotypes, histological changes, and locations of gene mutations are known, it remains unclear what(More)
Recent genetic analyses have revealed an important association of the gene encoding the P/Q-type voltage-dependent Ca(2+) channel alpha(1A) subunit with hereditary neurological disorders. We have identified the ataxic mouse mutation, rolling Nagoya (tg(rol)), in the alpha(1A) gene that leads to a charge-neutralizing arginine-to-glycine substitution at(More)
Hereditary ataxic mice, tottering (tg) and rolling Nagoya (tg(rol)), carry mutations in the P/Q-type Ca(2+) channel alpha(1A) subunit gene. The positions of the mutations and the neurological phenotypes are known, but the mechanisms of how the mutations cause the symptoms and how the different mutations lead to various onset and severity have remained(More)
1. Merkel cells were dissociated enzymatically from the footpad epidermis of 10- to 20-day-old rats pretreated with fluorescent dye, quinacrine, for purposes of staining. The fluorescent Merkel cells had an elongated or elliptic shape in situ, yet the dissociated ones were round (7-12 microns in diameter). 2. Electrical recordings were performed in the(More)
Characterization of mammalian homologues of Drosophila TRP proteins, which induce light-activated Ca2+ conductance in photoreceptors, has been an important clue to understand molecular mechanisms underlying receptor-activated Ca2+ influx in vertebrate cells. We have here isolated cDNA that encodes a novel TRP homologue, TRP5, predominantly expressed in the(More)
Depletion of intracellular calcium (Ca(2+)) stores induces store-operated Ca(2+) (SOC) entry across the plasma membrane (PM). STIM1, a putative Ca(2+) sensor in the endoplasmic reticulum (ER), has been recently shown to be necessary for SOC channel activation. Here we show that STIM1 dynamically moves in tubulovesicular shape on the ER and its(More)
N-type voltage-dependent Ca(2+) channels (VDCCs), predominantly localized in the nervous system, have been considered to play an essential role in a variety of neuronal functions, including neurotransmitter release at sympathetic nerve terminals. As a direct approach to elucidating the physiological significance of N-type VDCCs, we have generated mice(More)