Minjiao Chen

Learn More
Menaquinone is an electron carrier in the respiratory chain of Escherichia coli during anaerobic growth. Its biosynthesis involves (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylic acid (SHCHC) as an intermediate, which is believed to be derived from isochorismate and 2-ketoglutarate by one of the biosynthetic enzymes-MenD. However, we found that(More)
1,4-Dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) synthase, or MenB, catalyzes an intramolecular Claisen condensation involving two oxyanion intermediates in the biosynthetic pathway of menaquinone, an essential respiration electron transporter in many microorganisms. Here we report the finding that the DHNA-CoA product and its analogues bind and inhibit the(More)
Escherichia coli is used as a model organism for elucidation of menaquinone biosynthesis, for which a hydrolytic step from 1,4-dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) to 1,4-dihydroxy-2-naphthoate is still unaccounted for. Recently, a hotdog fold thioesterase has been shown to catalyze this conversion in phylloquinone biosynthesis, suggesting that its(More)
Menaquinone is a lipid-soluble molecule that plays an essential role as an electron carrier in the respiratory chain of many bacteria. We have previously shown that its biosynthesis in Escherichia coli involves a new intermediate, 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate (SEPHCHC), and requires an additional enzyme to convert this(More)
(1R,6R)-2-Succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) synthase (MenH) is an alpha/beta fold enzyme containing a catalytically essential serine-histidine-aspartate triad typical of serine proteases but catalyzes a pyruvate elimination reaction initiated by alpha-proton abstraction in the menaquinone biosynthetic pathway of Escherichia coli.(More)
Magnetic carbon nanostructures from microwave assisted- and conventional-pyrolysis processes are compared. Unlike graphitized carbon shells from conventional heating, different carbon shell morphologies including nanotubes, nanoflakes and amorphous carbon were observed. Crystalline iron and cementite were observed in the magnetic core, different from a(More)
1,4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase is a typical crotonase-fold protein catalyzing an intramolecular Claisen condensation in the menaquinone biosynthetic pathway. We have characterized this enzyme from Escherichia coli and found that it is activated by bicarbonate in a concentration-dependent manner. The bicarbonate binding site has(More)
The turnover product of the committed step of menaquinone biosynthesis was isolated and determined to be (1R,2S,5S,6S)-2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate. Structural determination of this key intermediate represents a critical step to complete elucidation of the biosynthetic pathway.
The first committed step in the classical biosynthetic route to menaquinone (vitamin K(2)) is a Stetter-like conjugate addition of alpha-ketoglutarate with isochorismate. This reaction is catalyzed by the thiamine diphosphate and metal-ion-dependent 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase (MenD). The medium-resolution(More)