Learn More
The dopamine transporter, DAT, is a primary regulator of dopamine (DA) signaling at the synapse. Persistent stimulation with the substrate amphetamine (AMPH) promotes DAT internalization. AMPH rapidly elicits DA efflux, yet its effect on DAT trafficking at short times is unknown. We examined the rapid effect of AMPH on DAT trafficking in rat striatal(More)
Memcached is a key-value distributed memory object caching system. It is used widely in the data-center environment for caching results of database calls, API calls or any other data. Using Memcached, spare memory in data-center servers can be aggregated to speed up lookups of frequently accessed information. The performance of Memcached is directly related(More)
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein syntaxin 1A (SYN1A) interacts with and regulates the function of transmembrane proteins, including ion channels and neurotransmitter transporters. Here, we define the first 33 amino acids of the N terminus of the dopamine (DA) transporter (DAT) as the site of direct(More)
Parallel programming is essential for reaping the benefits of parallel hardware, but it is notoriously difficult to develop and debug reliable, scalable software systems. One key challenge is that modern languages and systems provide poor support for ensuring concurrency correctness properties - atomicity, sequential consistency, and multithreaded(More)
Although it is clear that amphetamine-induced dopamine (DA) release mediated by the dopamine transporter (DAT) is integral to the behavioral actions of this psychostimulant, the mechanism of this release is not clear. In this study, we explored the requirement for intracellular Ca(2+) in amphetamine-induced DA efflux and currents mediated by the human DAT.(More)
The dopamine transporter (DAT) is a key mediator of dopaminergic neurotransmission and a major target for amphetamine. We found previously that protein kinase C (PKC) beta regulates amphetamine-mediated dopamine efflux. Here, using PKCbeta wild-type (WT) and knockout (KO) mice, we report a novel role for PKCbeta in amphetamine-induced regulation of DAT(More)
Cryptosporidium parvum is an enteric protozoan parasite that has emerged as a major cause of diarrhea, malnutrition, and gastroenteritis and poses a potential bioterrorism threat. C. parvum synthesizes guanine nucleotides from host adenosine in a streamlined pathway that relies on inosine 5'-monophosphate dehydrogenase (IMPDH). We have previously identified(More)
It is notoriously challenging to achieve parallel software systems that are both scalable and reliable. Parallel runtime support—such as multithreaded record & replay, data race and atomicity violation detectors, transactional memory, and support for stronger memory models—helps achieve these goals, but existing commodity solutions slow programs(More)
Inbred strains of mice have served as valuable models for studying genetic susceptibility to drug addiction, an alternative to genetically modified mouse models. This is the first study comparing amphetamine (AMPH) effects on locomotor stimulation and dopamine efflux between two inbred strains of mice C57BL/6J and 129S2/SvHsd, frequently used as background(More)
Cryptosporidium parasites are important waterborne pathogens of both humans and animals. The Cryptosporidium parvum and Cryptosporidium hominis genomes indicate that the only route to guanine nucleotides is via inosine 5'-monophosphate dehydrogenase (IMPDH). Thus the inhibition of the parasite IMPDH presents a potential strategy for treating Cryptosporidium(More)