Learn More
Dirac and Weyl semimetals are 3D analogues of graphene in which crystalline symmetry protects the nodes against gap formation. Na3Bi and Cd3As2 were predicted to be Dirac semimetals, and recently confirmed to be so by photoemission experiments. Several novel transport properties in a magnetic field have been proposed for Dirac semimetals. Here, we report a(More)
Voltage-gated sodium (Nav) channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Nav channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Nav channels, with Nav1.1 and Nav1.5 each harboring more than(More)
Graphene is the two-dimensional crystalline form of carbon whose extraordinary charge carrier mobility and other unique features hold great promise for nanoscale electronics. [ 1 ] Because graphene has no bandgap, however, its electrical conductivity cannot be completely controlled like classical semiconductor. Theoretical and experimental studies on(More)
Minhao Liu,1 Cui-Zu Chang,1,2 Zuocheng Zhang,1 Yi Zhang,2 Wei Ruan,1 Ke He,2,* Li-li Wang,2 Xi Chen,1 Jin-Feng Jia,1 Shou-Cheng Zhang,3,4 Qi-Kun Xue,1,2 Xucun Ma,2 and Yayu Wang1,† 1Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China 2Institute of Physics, Chinese Academy of(More)
HBx is a hepatitis B virus protein that is required for viral infectivity and replication. Anti-apoptotic Bcl-2 family members are thought to be among the important host targets of HBx. However, the structure and function of HBx are poorly understood and the molecular mechanism of HBx-induced carcinogenesis remains unknown. In this study, we report(More)
We report transport studies on magnetically doped Bi(2)Se(3) topological insulator ultrathin films grown by molecular beam epitaxy. The magnetotransport behavior exhibits a systematic crossover between weak antilocalization and weak localization with the change of magnetic impurity concentration, temperature, and magnetic field. We show that the(More)
Thin films of magnetically doped topological insulators Cr(0.22) (Bi(x) Sb(1-x) )(1.78) Te(3) are found to possess carrier-independent long-range ferromagnetic order with perpendicular magnetic anisotropy. The anomalous Hall resistance is greatly enhanced, up to one quarter of quantum Hall resistance, by depletion of the carriers. The results demonstrate(More)
Topological insulators (TIs) are quantum materials with insulating bulk and topologically protected metallic surfaces with Dirac-like band structure. The most challenging problem faced by current investigations of these materials is to establish the existence of significant bulk conduction. Here we show how the band structure of topological insulators can(More)
Equilibrative nucleoside transporters (ENTs), which facilitate cross-membrane transport of nucleosides and nucleoside-derived drugs, play an important role in the salvage pathways of nucleotide synthesis, cancer chemotherapy, and treatment for virus infections. Functional characterization of ENTs at the molecular level remains technically challenging and(More)
A striking prediction in topological insulators is the appearance of the quantized Hall resistance when the surface states are magnetized. The surface Dirac states become gapped everywhere on the surface, but chiral edge states remain on the edges. In an applied current, the edge states produce a quantized Hall resistance that equals the Chern number C = ±1(More)