Mingzhen Tian

  • Citations Per Year
Learn More
A data-processing technique is proposed for use with conventional frequency-chirped absorption spectroscopy to ensure accurate mapping of spectral features into time-domain signatures with arbitrarily fast readout chirp rates. This technique recovers the spectrum from a signal that is distorted owing to the fast chirp rate and therefore facilitates fast(More)
A novel technique for programming broadband true-time delays that uses two frequency-offset temporally overlapped linear frequency-chirped pulses to produce periodic spectral gratings in an inhomogeneously broadened absorber is presented. Advantages of this technique include its ability to use chirped pulses that are longer than the coherence time of the(More)
Photon-echo-based devices have been proposed for many applications in data storage, image processing, and optical communications. Many of these applications would benefit if the output from the photon-echo process could be used as input in a second photon-echo process. We demonstrate the generation of such secondary echoes, using the amplified output from(More)
Using multiple temporally-overlapped, frequency offset and phase-tuned, linear frequency chirps, a new method of multi-GHz optical coherent transient optical pulse shaping and processing in inhomogeneously broadened rare-earth doped crystals is proposed. Using this technique with properly chirped laser sources, multi-GHz processing can be controlled with(More)
We describe experimentally accessible diagnostics for the excitation of optically dense frequency-selective media by linear frequency-chirped pulses using a sensitive pump–probe technique on the F0 to D0 transitions of 1.0% Eu:Y2SiO5 . Distinct features within a transmitted cw probe pulse are used to identify the combination of linear chirp rate and optical(More)
The geometric phase of an atomic system has been observed in V-type three-level barium atoms using photon echoes. The geometric phase results from a cyclic evolution of a two-level subsystem driven by a laser pulse. The phase change is observed on the echo field produced on a different subsystem that is coupled via the ground state to the driven subsystem.(More)
A technique is proposed to manipulate atomic population in an inhomogeneously broadened medium, which can set an arbitrary absorption spectrum to a uniform transparency (erasure) or to a nearly complete inversion. These reconfigurations of atomic spectral distribution are achieved through excitation of electronic transitions using a laser pulse with chirped(More)
Stimulated photon echoes (SPEs) with time duration comparable to the coherent lifetime and Rabi period have been investigated theoretically and experimentally with an angled beam configuration. The Rabi oscillation effects on both the transmitted field (optical nutation) and the SPE fields are explained by analytic solutions of Maxwell-Bloch equations. The(More)