Learn More
Axonal Kv1 channels regulate action potential propagation-an evolutionarily conserved function important for the control of motor behavior as evidenced from the linkage of human Kv1 channel mutations to myokymia/episodic ataxia type 1 (EA1) and the Shaker mutant phenotype in Drosophila. To search for the machinery that mediates axonal targeting of Kv1(More)
Precise targeting of various voltage-gated ion channels to proper membrane domains is crucial for their distinct roles in neuronal excitability and synaptic transmission. How each channel protein is transported within the cytoplasm is poorly understood. Here, we report that KIF5/kinesin I transports Kv3.1 voltage-gated K(+) (Kv) channels through the axon(More)
Kv3 (Shaw) channels regulate rapid spiking, transmitter release and dendritic integration of many central neurons. Crucial to functional diversity are the complex targeting patterns of channel proteins. However, the targeting mechanisms are not known. Here we report that the axon-dendrite targeting of Kv3.1 is controlled by a conditional interaction of a(More)
legend: Confocal image (63ϫ) of an apical view of sensory epithelium excised from the mouse utricle, a vestibular organ, at embryonic day 18. The tissue was stained with phalloidin (red) to illuminate the actin-rich hair bundles and the actin belt that rings the apical surface of each cell. Antitubulin (green) labels the kinocilium. For more information,(More)
The conventional kinesin motor transports many different cargos to specific locations in neurons. How cargos regulate motor function remains unclear. Here we focus on KIF5, the heavy chain of conventional kinesin, and report that the Kv3 (Shaw) voltage-gated K(+) channel, the only known tetrameric KIF5-binding protein, clusters and activates KIF5 motors(More)
  • 1