Mingon Kang

Learn More
One of the major obstacles in computational modeling of a biological system is to determine a large number of parameters in the mathematical equations representing biological properties of the system. To tackle this problem, we have developed a global optimization method, called Discrete Selection Levenberg-Marquardt (DSLM), for parameter estimation. For(More)
Developing vigorous mathematical equations and estimating accurate parameters within feasible computational time are two indispensable parts to build reliable system models for representing biological properties of the system and for producing reliable simulation. For a complex biological system with limited observations, one of the daunting tasks is the(More)
Detecting arrhythmia from ECG data is now feasible on mobile devices, but in this environment it is necessary to trade computational efficiency against accuracy. We propose an adaptive strategy for feature extraction that only considers normalized beat morphology features when running in a resource-constrained environment; but in a high-performance(More)
Computational modeling and simulation play an important role in analyzing the behavior of complex biological systems in response to the implantation of biomedical devices. Quantitative computational modeling discloses the nature of foreign body responses. Such understanding will shed insight on the cause of foreign body responses, which will lead to(More)