Learn More
We studied the response of swimming Escherichia coli (E. coli) bacteria in a comprehensive set of well-controlled chemical concentration gradients using a newly developed microfluidic device and cell tracking imaging technique. In parallel, we carried out a multi-scale theoretical modeling of bacterial chemotaxis taking into account the relevant internal(More)
This Letter reports experiments on the shape and path of air bubbles ~diameter range 0.1–0.2 cm! rising in clean water. We find that bubbles in this diameter range have two steady shapes, a sphere and an ellipsoid, depending on the size of the capillary tube from which they detach. The spherical bubbles move significantly slower than the ellipsoidal ones of(More)
In vitro, animal cells are mostly cultured on a gel substrate. It was recently shown that substrate stiffness affects cellular behaviors in a significant way, including adhesion, differentiation, and migration. Therefore, an accurate method is needed to characterize the modulus of the substrate. In situ microscopic measurements of the gel substrate modulus(More)
Dendritic cell (DC) homing to the lymphatics and positioning within the lymph node is important for adaptive immunity, and is regulated by gradients of CCL19 and CCL21, ligands for CCR7. Despite the importance of DC chemotaxis, it is not well understood how DCs interpret gradients of these chemokines in a complex 3D microenvironment. Here, we use a(More)
Successful mammalian reproduction requires that sperm migrate through a long and convoluted female reproductive tract before reaching oocytes. For many years, fertility studies have focused on biochemical and physiological requirements of sperm. Here we show that the biophysical environment of the female reproductive tract critically guides sperm migration,(More)
An ability to monitor bacterial locomotion and collective dynamics is crucial to our understanding of a number of well-characterized phenotypes including biofilm formation, chemotaxis, and virulence. Here, we report the tracking of multiple swimming Escherichia coli cells in three spatial dimensions and at single-cell resolution using a novel(More)
Chemokine-mediated directed tumor cell migration within a three dimensional (3D) matrix, or chemoinvasion, is an important early step in cancer metastasis. Despite its clinical importance, it is largely unknown how cytokine and growth factor gradients within the tumor microenvironment regulate chemoinvasion. We studied tumor cell chemoinvasion in(More)
This study demonstrates that the pattern assembly and attachment strength of colloids in an evaporating sessile droplet resting on a smooth substrate can be controlled by adding nonionic solutes (surfactant) to the solution. As expected, increasing the surfactant concentration leads to a decrease in initial surface tension of the drop, σ(0). For the range(More)
In native states, animal cells of many types are supported by a fibrous network that forms the main structural component of the ECM. Mechanical interactions between cells and the 3D ECM critically regulate cell function, including growth and migration. However, the physical mechanism that governs the cell interaction with fibrous 3D ECM is still not known.(More)