Minglin Ma

Learn More
Understanding the complementary roles of surface energy and roughness on natural nonwetting surfaces has led to the development of a number of biomimetic superhydrophobic surfaces, which exhibit apparent contact angles with water greater than 150 degrees and low contact angle hysteresis. However, superoleophobic surfaces-those that display contact angles(More)
The targeted delivery of therapeutics to tumors remains an important challenge in cancer nanomedicine. Attaching nanoparticles to cells that have tumoritropic migratory properties is a promising modality to address this challenge. Here we describe a technique to create nanoparticulate cellular patches that remain attached to the membrane of cells for up to(More)
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract We have developed a local anesthetic-eluting suture system which would combine the function and ubiquity of the suture for surgical repair with the controlled release properties of a biodegradable polymeric matrix. Drug-free and(More)
  • Citation Dang, Tram T, Anh V Thai, Joshua Cohen, Jeremy E Slosberg, Karolina Siniakowicz +13 others
  • 2014
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract Immuno-isolation of islets has the potential to enable the replacement of pancreatic function in diabetic patients. However, host response to the encapsulated islets frequently leads to fibrotic overgrowth with subsequent(More)
  • C Wang, G Peng, M Ma, Z Li, Chunhua Wang, Guanchao Peng +2 others
  • 2011
A new quadrature voltage controlled oscillator (QVCO) circuit topology is proposed for low-voltage and low-power applications. In the proposed circuit, two oscillators with current-reused structure are coupled to each other by two P&N-MOS pairs. In this way, low phase noise quadrature signals are generated with low-voltage and low-power. The simulation is(More)
The efficacy of implanted biomedical devices is often compromised by host recognition and subsequent foreign body responses. Here, we demonstrate the role of the geometry of implanted materials on their biocompatibility in vivo. In rodent and non-human primate animal models, implanted spheres 1.5 mm and above in diameter across a broad spectrum of(More)
Diabetes is caused by the loss or dysfunction of insulin-secreting β-cells in the pancreas. β-cells reduce their mass and lose insulin-producing ability in vitro, likely due to insufficient cell-cell and cell-extracellular matrix (ECM) interactions as β-cells lose their native microenvironment. Herein, we built an ex-vivo cell microenvironment by culturing(More)
Fibers with long-range ordered internal structures have applications in various areas such as photonic band gap fibers, optical waveguides, wearable power, sensors, and sustained drug release. Up to now, such fibers have been formed by melt extrusion or drawing from a macroscopic preformed rod and were typically limited to diameters >10 microm with internal(More)
The foreign body response is an immune-mediated reaction that can lead to the failure of implanted medical devices and discomfort for the recipient. There is a critical need for biomaterials that overcome this key challenge in the development of medical devices. Here we use a combinatorial approach for covalent chemical modification to generate a large(More)
The prevalence of impaired cutaneous wound healing is high and treatment is difficult and often ineffective, leading to negative social and economic impacts for our society. Innovative treatments to improve cutaneous wound healing by promoting complete tissue regeneration are therefore urgently needed. Mesenchymal stromal cells (MSCs) have been reported to(More)