Minghua Xiong

Learn More
An AAP-degrading bacterium, AAP-7, was isolated from AAP-polluted soil. AAP-7 was identified as Pseudoxanthomonas sp. on the basis of the comparative analysis of 16S rDNA sequences. The strain was able to transformate more than 80% AAP by means of co-metabolism and degraded AAP via hydrolysis or demethylation to form(More)
A natural consortium, named L1, of Rhodococcus sp. JT-3 and Brevundimonas sp. JT-9 was obtained from quizalofop-p-ethyl (QE) polluted soil. The consortium was able to use QE as a sole carbon source for growth and degraded 100mgL-1 of QE in 60h. Strain JT-3 initiated the catabolism of QE to quizalofop acid (QA), which was used by strain JT-9 as carbon source(More)
Rhodococcus sp. BX2 degrades bensulfuron-methyl but not butachlor, and Acinetobacter sp. LYC-1 degrades butachlor but not bensulfuron-methyl. Functional strains were constructed through protoplast fusion of Rhodococcus sp. BX2 and Acinetobacter sp. LYC-1 to generate fusants with an improved ability to simultaneously degrade bensulfuron-methyl and butachlor.(More)
Neonicotinoid insecticides are one of the most important commercial insecticides used worldwide. The potential toxicity of the residues present in environment to humans has received considerable attention. In this study, a novel Ochrobactrum sp. strain D-12 capable of using acetamiprid as the sole carbon source as well as energy, nitrogen source for growth(More)
Chlorothalonil (CTN) is one of the most widely used fungicides and is often detected in the environment. Here, we report the isolation and characterization of a novel CTN-degrading bacterial strain XF-3 from long-term CTN-contaminated sites and identify it as a strain of the Paracoccus sp. The isolate could utilise CTN as the sole source of carbon and(More)
The abundance and diversity of soil bacterial and fungal communities in a wheat field under elevated atmospheric CO2 concentrations and increased air temperatures were investigated using qPCR and pyrosequencing. Elevated CO2 concentrations significantly increased the abundances of bacteria and fungi, and an increase of air temperatures significantly reduced(More)
The recently isolated bacterial strain Rhodococcus sp. D310-1 can degrade high concentrations of chlorimuron-ethyl (up to 1000 mg L(-1)), indicating its potential for the bioremediation of soil contaminated with high levels of chlorimuron-ethyl. In this study, Rhodococcus sp. D310-1 was tagged with green fluorescent protein gene (gfp) to track its survival(More)
OBJECTIVE To identify and characterize an acetonitrile degrading strain BX2, thus to assess its potentials in the treatment of acetonitrile containing wastewater. METHODS By means of phenotype and physio-biochemical characterization as well as phylogenetic analysis, we identified strain BX2. The optimum culture conditions of the strain were studied with(More)
Given the intensive and widespread application of the pesticide, buprofezin, its environmental residues potentially pose a problem; yet little is known about buprofezin's kinetic and metabolic behaviors. In this study, a novel gram-positive strain, designated BF-5, isolated from aerobic activated sludge, was found to be capable of metabolizing buprofezin as(More)
Pseudomonas sp. CTN-4 degrades chlorothalonil (CTN) but not acetamiprid (AAP), and Pigmentiphaga sp. strain AAP-1 degrades AAP but not CTN. A functional strain, AC, was constructed through protoplast fusion of two parental strains (Pseudomonas sp. CTN-4 and Pigmentiphaga sp. strain AAP-1) in order to simultaneously improve the degradation efficiency of AAP(More)
  • 1