Learn More
We present a visual simulation technique called <i>appearance manifolds</i> for modeling the time-variant surface appearance of a material from data captured at a single instant in time. In modeling time-variant appearance, our method takes advantage of the key observation that concurrent variations in appearance over a surface represent different degrees(More)
This paper presents a GPU-based method for interactive global illumination that integrates complex effects such as multi-bounce indirect lighting, glossy reflections, caustics, and arbitrary specular paths. Our method builds upon scattered data sampling and interpolation on the GPU. We start with raytraced shading points and partition them into coherent(More)
Solving aliasing artifacts is an essential problem in shadow mapping approaches. Many works have been proposed, however, most of them focused on removing the texel-level aliasing that results from the limited resolution of shadow maps. Little work has been done to solve the pixel-level shadow aliasing that is produced by the rasterization on the screen(More)
This paper presents a new technique for real-time relighting of static scenes with all-frequency shadows from complex lighting and highly specular reflections from spatially varying BRDFs. The key idea is to depict the boundaries of visible regions using piecewise linear functions, and convert the shading computation into double product integrals-the(More)
In this paper, we introduce a new representation – radiance transfer fields (RTF) – for rendering interreflections in dynamic scenes under low frequency illumination. The RTF describes the radiance transferred by an individual object to its surrounding space as a function of the incident radiance. An important property of RTF is its independence of the(More)
Traditional gradient domain seamless image cloning is a time consuming task, requiring the solving of Poisson’s equations whenever the shape or position of the cloned region changes. Recently, a more efficient alternative, the mean-value coordinates (MVCs) based approach, was proposed to interpolate interior pixels by a weighted combination of values along(More)
Shadow maps sample scene visibility in the light source space and offer an efficient solution to generate hard shadows. However, they suffer from aliasing artifacts because of discretization errors, inadequate resolution and projection distortion. In this paper, we propose the shadow geometry map method, where a shadow depth map is augmented by storing(More)
Fast rendering of dynamic scenes with natural illumination, all-frequency shadows and spatially-varying reflections is important but challenging. One main difficulty brought by moving objects is that the runtime visibility update of dynamic occlusion is usually time-consuming and slow. In this paper, we present a new visibility sampling technique and show(More)
The accurate monitoring of blade vibration under operating conditions is essential in turbo-machinery testing. Blade tip timing (BTT) is a promising non-contact technique for the measurement of blade vibrations. However, the BTT sampling data are inherently under-sampled and contaminated with several measurement uncertainties. How to recover frequency(More)
  • 1