Ming Zhe Hu

Learn More
In this two-part paper, the impact of level-II Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity data on the prediction of a cluster of tornadic thunderstorms in the Advanced Regional Prediction System (ARPS) model are studied. Radar reflectivity data are used primarily in a cloud analysis procedure that retrieves the amount(More)
In this two-part paper, the impact of level-II Weather Surveillance Radar-1988 Doppler (WSR-88D) radar reflectivity and radial velocity data on the prediction of a cluster of tornadic thunderstorms in the Advanced Regional Prediction System (ARPS) model is studied. Radar reflectivity data are used primarily in a cloud analysis procedure that retrieves the(More)
Various configurations of the intermittent data assimilation procedure for Level-II Weather Surveillance Radar-1988 Doppler radar data are examined for the analysis and prediction of a tornadic thunderstorm that occurred on 8 May 2003 near Oklahoma City, Oklahoma. Several tornadoes were produced by this thunderstorm, causing extensive damages in the south(More)
[1] The cloud analysis procedure of the Advanced Regional Prediction System (ARPS) is implemented in a proposed operational numerical forecast system composed of the Grid-point Statistical Interpolation (GSI) and the Advanced Research WRF (WRF-ARW). The case of 23 May 2005 Central Plains storm cluster is used to assess the impact of the cloud analysis using(More)
A 50-m-grid-spacing Advanced Regional Prediction System (ARPS) simulation of the 8 May 2003 Oklahoma City tornadic supercell is examined. A 40-min forecast run on the 50-m grid produces two F3-intensity tornadoes that track within 10 km of the location of the observed long-track F4-intensity tornado. The development of both simulated tornadoes is analyzed(More)
The 8 May 2003 Oklahoma City tornadic supercell is predicted with the ARPS model using four nested grids with 9-km, 1-km, 100-m, and 50-m grid spacings. The Oklahoma City WSR-88D radar radial velocity and reflectivity data are assimilated through the ARPS 3DVAR and cloud analysis on the 1-km grid to generate an initial condition that includes a(More)
A regional ensemble Kalman filter (EnKF) system is established for potential Rapid Refresh (RAP) operational application. The system borrows data processing and observation operators from the gridpoint statistical interpolation (GSI), and precalculates observation priors using the GSI. The ensemble square root Kalman filter (EnSRF) algorithm is used, which(More)